In order to eliminate the settlement underestimation in surcharge preload engineering, a study based on Bjerrum's creep diagram and the tangent slope definition of secondary consolidation coefficient was carried o...In order to eliminate the settlement underestimation in surcharge preload engineering, a study based on Bjerrum's creep diagram and the tangent slope definition of secondary consolidation coefficient was carried out to analyze the time effect of secondary consolidation coefficient of over consolidated soil, and a time–growth model for it was formulated. As Bjerrum's creep diagram is an idealized model, oedometer tests were performed to improve the above time–growth model of secondary consolidation coefficient for the purpose of achieving a better agreement with the actual ground situations. It is found that secondary consolidation coefficient of over consolidated soil not only decreases with the ratio of historical maximum to current effective stress of soil(OCR), but also increases with the development time of secondary consolidation. No matter how large OCR is, the long-term time effect of secondary consolidation coefficient of over consolidated soil is all significant. Based on the above results, a model for settlement estimation was formulated and a case study to estimate it indicates that the settlement estimated by our method is 2–5 times larger than that estimated by the previous method. Moreover, the larger the OCR is as well as the longer the service life is, the larger the difference between our method and the previous method is. Thus, the post-construction secondary settlement in surcharge preload engineering will be underestimated when neglecting the time effect of secondary consolidation coefficient in over consolidated state.展开更多
Based on Bishop's model and by applying the first and second order mean deviations method, an approximative solution method for the first and second order partial derivatives of functional function was deduced acc...Based on Bishop's model and by applying the first and second order mean deviations method, an approximative solution method for the first and second order partial derivatives of functional function was deduced according to numerical analysis theory. After complicated multi-independent variables implicit functional function was simplified to be a single independent variable implicit function and rule of calculating derivative for composite function was combined with principle of the mean deviations method, an approximative solution format of implicit functional function was established through Taylor expansion series and iterative solution approach of reliability degree index was given synchronously. An engineering example was analyzed by the method. The result shows its absolute error is only 0.78% as compared with accurate solution.展开更多
Surrounding rocks of weakly consolidated soft rock roadway show obvious strain softening and dilatancy effects after excavation. A damage coefficient concerning modulus attenuation was defined. Response models of stre...Surrounding rocks of weakly consolidated soft rock roadway show obvious strain softening and dilatancy effects after excavation. A damage coefficient concerning modulus attenuation was defined. Response models of stress and displacement of surrounding rock of soft rock roadway and analytical expressions to calculate plastic zones under different interior pressures and non-uniform original rock stresses were derived based on damage theories and a triple linear elastic-plastic strain softening model. Influence laws of dilatancy gradient on damage development, distributions of stresses and displacement in plastic region were analyzed. Interior pressure conditions to develop plastic region under different origin rock stresses were established and their influences on plastic region distribution were also discussed. The results show that the order of maximum principle stress is exchanged between ~0 and trr with the increase of interior pressure P0, which causes distributions of plastic zone and stress shift. Dilatancy effect which has great influences on the damage propagation and displacements in plastic region has little effect on the size of plastic region and stress responses. The conclusions provide a theoretical basis for a reasonable evaluation of stability and effective supporting of weakly consolidated soft rock roadway.展开更多
A new approach is proposed to analyze the settlement behavior for single pile embedded in layered soils. Firstly, soil layers surrounding pile shaft are simulated by using distributed Voigt model, and finite soil laye...A new approach is proposed to analyze the settlement behavior for single pile embedded in layered soils. Firstly, soil layers surrounding pile shaft are simulated by using distributed Voigt model, and finite soil layers under the pile end are assumed to be virtual soil-pile whose cross-section area is the same as that of the pile shaft. Then, by means of Laplace transform and impedance function transfer method to solve the static equilibrium equation of pile, the analytical solution of the displacement impedance fimction at the pile head is derived. Furthermore, the analytical solution of the settlement at the head of single pile is theoretically derived by virtue of convolution theorem. Based on these solutions, the influences of parameters of soil-pile system on the settlement behavior for single pile are analyzed. Also, comparison of the load-settlement response for two well-instrumented field tests in multilayered soils is given to demonstrate the effectiveness and accuracy of the proposed approach. It can be noted that the presented solution can be used to calculate the settlement of single pile for the preliminary design of pile foundation.展开更多
Stack effect is a dominant driving force for building natural ventilation.Analytical models were developed for the evaluation of stack effect in a shaft,accounting for the heat transfer from shaft interior boundaries....Stack effect is a dominant driving force for building natural ventilation.Analytical models were developed for the evaluation of stack effect in a shaft,accounting for the heat transfer from shaft interior boundaries.Both the conditions with constant heat flux from boundaries to the airflow and the ones with constant boundary temperature were considered.The prediction capabilities of these analytical models were evaluated by using large eddy simulation(LES) for a hypothetical shaft.The results show that there are fairly good agreements between the predictions of the analytical models and the LES predictions in mass flow rate,vertical temperatures profile and pressure difference as well.Both the results of analytical models and LES show that the neutral plane could locate higher than one half of the shaft height when the upper opening area is identical with the lower opening area.Further,it is also shown that the analytical models perform better than KLOTE's model does in the mass flow rate prediction.展开更多
The dynamic equivalent continuum modeling method of the mast which is based on energy equivalency principle was investigated. And three kinds of mast dynamic model were established, which were equivalent continuum mod...The dynamic equivalent continuum modeling method of the mast which is based on energy equivalency principle was investigated. And three kinds of mast dynamic model were established, which were equivalent continuum model, finite element model and simulation model, respectively. The mast frequencies and mode shapes were calculated by these models and compared with each other. The error between the equivalent continuum model and the finite element model is less than 5% when the mast length is longer. Dynamic responses of the mast with different lengths are tested, the mode frequencies and mode shapes are compared with finite element model. The mode shapes match well with each other, while the frequencies tested by experiments are lower than the results of the finite element model, which reflects the joints lower the mast stiffness. The nonlinear dynamic characteristics are presented in the dynamic responses of the mast under different excitation force levels. The joint nonlinearities in the deployable mast are identified as nonlinear hysteresis contributed by the coulomb friction which soften the mast stiffness and lower the mast frequencies.展开更多
With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of...With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of the pile within an allowable displacement is an important issue.However,the current p-y curve methods cannot fully take into account the pile-soil interaction,which will lead to a large calculation difference.In this paper,a new analytical p-y curve is established and a finite difference method for determining the lateral response of pile is proposed,which can consider the separation effect of pile-soil interface and the coefficient of circumferential friction resistance.In particular,an analytical expression is developed to determine the compressive soil pressure by dividing the compressive soil pressure into two parts:initial compressive soil pressure and increment of compressive soil pressure.In addition,the relationship between compressive soil pressure and horizontal displacement of the pile is established based on the reasonable assumption.The correctness of the proposed method is verified through four examples.Based on the verified method,a parametric analysis is also conducted to investigate the influences of factors on lateral response of the pile,including internal friction angle,pile length and elastic modulus of pile.展开更多
The effects of geometry on mechanical properties in woven fabric composites were explored. Two types of composites, including one-layered and two-layered composites, were designed and studied. For one-layered composit...The effects of geometry on mechanical properties in woven fabric composites were explored. Two types of composites, including one-layered and two-layered composites, were designed and studied. For one-layered composites, inter-strand gap effects on the mechanical properties were studied, while three cases of geometries with inter-strand gaps in two-layered composites were evaluated. A woven fiber micromechanics analytical model called MESOTEX was employed for theoretical simulation. The predicted results show that the inter-strand gap and simple variation of the strand positions in a repeating unit cell significantly affect the mechanical properties of woven fabric composites.展开更多
Coalbed gas non-Darcy flow has been observed in high permeable fracture systems,and some mathematical and numerical models have been proposed to study the effects of non-Darcy flow using Forchheimer non-Darcy model.Ho...Coalbed gas non-Darcy flow has been observed in high permeable fracture systems,and some mathematical and numerical models have been proposed to study the effects of non-Darcy flow using Forchheimer non-Darcy model.However,experimental results show that the assumption of a constant Forchheimer factor may cause some limitations in using Forchheimer model to describe non-Darcy flow in porous media.In order to investigate the effects of non-Darcy flow on coalbed methane production,this work presents a more general coalbed gas non-Darcy flow model according to Barree-Conway equation,which could describe the entire range of relationships between flow velocity and pressure gradient from low to high flow velocity.An expanded mixed finite element method is introduced to solve the coalbed gas non-Darcy flow model,in which the gas pressure and velocity can be approximated simultaneously.Error estimate results indicate that pressure and velocity could achieve first-order convergence rate.Non-Darcy simulation results indicate that the non-Darcy effect is significant in the zone near the wellbore,and with the distance from the wellbore increasing,the non-Darcy effect becomes weak gradually.From simulation results,we have also found that the non-Darcy effect is more significant at a lower bottom-hole pressure,and the gas production from non-Darcy flow is lower than the production from Darcy flow under the same permeable condition.展开更多
基金Project(51178419)supported by the National Natural Science Foundation of China
文摘In order to eliminate the settlement underestimation in surcharge preload engineering, a study based on Bjerrum's creep diagram and the tangent slope definition of secondary consolidation coefficient was carried out to analyze the time effect of secondary consolidation coefficient of over consolidated soil, and a time–growth model for it was formulated. As Bjerrum's creep diagram is an idealized model, oedometer tests were performed to improve the above time–growth model of secondary consolidation coefficient for the purpose of achieving a better agreement with the actual ground situations. It is found that secondary consolidation coefficient of over consolidated soil not only decreases with the ratio of historical maximum to current effective stress of soil(OCR), but also increases with the development time of secondary consolidation. No matter how large OCR is, the long-term time effect of secondary consolidation coefficient of over consolidated soil is all significant. Based on the above results, a model for settlement estimation was formulated and a case study to estimate it indicates that the settlement estimated by our method is 2–5 times larger than that estimated by the previous method. Moreover, the larger the OCR is as well as the longer the service life is, the larger the difference between our method and the previous method is. Thus, the post-construction secondary settlement in surcharge preload engineering will be underestimated when neglecting the time effect of secondary consolidation coefficient in over consolidated state.
基金Project(50378036) supported by the National Natural Science Foundation of ChinaProject(200503) supported by Foundation of Communications Department of Hunan Province, China
文摘Based on Bishop's model and by applying the first and second order mean deviations method, an approximative solution method for the first and second order partial derivatives of functional function was deduced according to numerical analysis theory. After complicated multi-independent variables implicit functional function was simplified to be a single independent variable implicit function and rule of calculating derivative for composite function was combined with principle of the mean deviations method, an approximative solution format of implicit functional function was established through Taylor expansion series and iterative solution approach of reliability degree index was given synchronously. An engineering example was analyzed by the method. The result shows its absolute error is only 0.78% as compared with accurate solution.
基金Project(51174128)supported by the National Natural Science Foundation of ChinaProject(20123718110007)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘Surrounding rocks of weakly consolidated soft rock roadway show obvious strain softening and dilatancy effects after excavation. A damage coefficient concerning modulus attenuation was defined. Response models of stress and displacement of surrounding rock of soft rock roadway and analytical expressions to calculate plastic zones under different interior pressures and non-uniform original rock stresses were derived based on damage theories and a triple linear elastic-plastic strain softening model. Influence laws of dilatancy gradient on damage development, distributions of stresses and displacement in plastic region were analyzed. Interior pressure conditions to develop plastic region under different origin rock stresses were established and their influences on plastic region distribution were also discussed. The results show that the order of maximum principle stress is exchanged between ~0 and trr with the increase of interior pressure P0, which causes distributions of plastic zone and stress shift. Dilatancy effect which has great influences on the damage propagation and displacements in plastic region has little effect on the size of plastic region and stress responses. The conclusions provide a theoretical basis for a reasonable evaluation of stability and effective supporting of weakly consolidated soft rock roadway.
基金Project(50879077) supported by the National Natural Science Foundation of China
文摘A new approach is proposed to analyze the settlement behavior for single pile embedded in layered soils. Firstly, soil layers surrounding pile shaft are simulated by using distributed Voigt model, and finite soil layers under the pile end are assumed to be virtual soil-pile whose cross-section area is the same as that of the pile shaft. Then, by means of Laplace transform and impedance function transfer method to solve the static equilibrium equation of pile, the analytical solution of the displacement impedance fimction at the pile head is derived. Furthermore, the analytical solution of the settlement at the head of single pile is theoretically derived by virtue of convolution theorem. Based on these solutions, the influences of parameters of soil-pile system on the settlement behavior for single pile are analyzed. Also, comparison of the load-settlement response for two well-instrumented field tests in multilayered soils is given to demonstrate the effectiveness and accuracy of the proposed approach. It can be noted that the presented solution can be used to calculate the settlement of single pile for the preliminary design of pile foundation.
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProject(2010DFA72740-03) supported by the National Key Technology Research and Development Program of China
文摘Stack effect is a dominant driving force for building natural ventilation.Analytical models were developed for the evaluation of stack effect in a shaft,accounting for the heat transfer from shaft interior boundaries.Both the conditions with constant heat flux from boundaries to the airflow and the ones with constant boundary temperature were considered.The prediction capabilities of these analytical models were evaluated by using large eddy simulation(LES) for a hypothetical shaft.The results show that there are fairly good agreements between the predictions of the analytical models and the LES predictions in mass flow rate,vertical temperatures profile and pressure difference as well.Both the results of analytical models and LES show that the neutral plane could locate higher than one half of the shaft height when the upper opening area is identical with the lower opening area.Further,it is also shown that the analytical models perform better than KLOTE's model does in the mass flow rate prediction.
基金Projects(50935002, 11002039) supported by the National Natural Science Foundation of ChinaProject(HIT.KLOF.2009062) supported by Key Laboratory Opening Funding of Aerospace Mechanism and Control Technology,Chinasupport by "111 Project" (Grant No.B07018)
文摘The dynamic equivalent continuum modeling method of the mast which is based on energy equivalency principle was investigated. And three kinds of mast dynamic model were established, which were equivalent continuum model, finite element model and simulation model, respectively. The mast frequencies and mode shapes were calculated by these models and compared with each other. The error between the equivalent continuum model and the finite element model is less than 5% when the mast length is longer. Dynamic responses of the mast with different lengths are tested, the mode frequencies and mode shapes are compared with finite element model. The mode shapes match well with each other, while the frequencies tested by experiments are lower than the results of the finite element model, which reflects the joints lower the mast stiffness. The nonlinear dynamic characteristics are presented in the dynamic responses of the mast under different excitation force levels. The joint nonlinearities in the deployable mast are identified as nonlinear hysteresis contributed by the coulomb friction which soften the mast stiffness and lower the mast frequencies.
基金Project(52068004)supported by the National Natural Science Foundation of ChinaProject(2018JJA160134)supported by the Natural Science Foundation of Guangxi Province,ChinaProject(AB19245018)supported by Key Research Projects of Guangxi Province,China。
文摘With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of the pile within an allowable displacement is an important issue.However,the current p-y curve methods cannot fully take into account the pile-soil interaction,which will lead to a large calculation difference.In this paper,a new analytical p-y curve is established and a finite difference method for determining the lateral response of pile is proposed,which can consider the separation effect of pile-soil interface and the coefficient of circumferential friction resistance.In particular,an analytical expression is developed to determine the compressive soil pressure by dividing the compressive soil pressure into two parts:initial compressive soil pressure and increment of compressive soil pressure.In addition,the relationship between compressive soil pressure and horizontal displacement of the pile is established based on the reasonable assumption.The correctness of the proposed method is verified through four examples.Based on the verified method,a parametric analysis is also conducted to investigate the influences of factors on lateral response of the pile,including internal friction angle,pile length and elastic modulus of pile.
基金Work supported by the Second Stage of the Brain Korea 21 Projects
文摘The effects of geometry on mechanical properties in woven fabric composites were explored. Two types of composites, including one-layered and two-layered composites, were designed and studied. For one-layered composites, inter-strand gap effects on the mechanical properties were studied, while three cases of geometries with inter-strand gaps in two-layered composites were evaluated. A woven fiber micromechanics analytical model called MESOTEX was employed for theoretical simulation. The predicted results show that the inter-strand gap and simple variation of the strand positions in a repeating unit cell significantly affect the mechanical properties of woven fabric composites.
基金Projects(91330106,11171190)supported by the National Natural Science Foundation of ChinaProjects(15CX05065A,15CX05003A)supported by the Fundamental Research Funds for the Central Universities,China
文摘Coalbed gas non-Darcy flow has been observed in high permeable fracture systems,and some mathematical and numerical models have been proposed to study the effects of non-Darcy flow using Forchheimer non-Darcy model.However,experimental results show that the assumption of a constant Forchheimer factor may cause some limitations in using Forchheimer model to describe non-Darcy flow in porous media.In order to investigate the effects of non-Darcy flow on coalbed methane production,this work presents a more general coalbed gas non-Darcy flow model according to Barree-Conway equation,which could describe the entire range of relationships between flow velocity and pressure gradient from low to high flow velocity.An expanded mixed finite element method is introduced to solve the coalbed gas non-Darcy flow model,in which the gas pressure and velocity can be approximated simultaneously.Error estimate results indicate that pressure and velocity could achieve first-order convergence rate.Non-Darcy simulation results indicate that the non-Darcy effect is significant in the zone near the wellbore,and with the distance from the wellbore increasing,the non-Darcy effect becomes weak gradually.From simulation results,we have also found that the non-Darcy effect is more significant at a lower bottom-hole pressure,and the gas production from non-Darcy flow is lower than the production from Darcy flow under the same permeable condition.