为研究加卸载对盾构隧道结构受力和材料损伤状态的影响,基于混凝土塑性损伤本构、非线性接触理论和Python二次开发,用全周单向受压弹簧模拟地层反力,建立二维管片-接缝不连续模型和三维精细化管片-接缝不连续模型,模拟不同土质中(固结...为研究加卸载对盾构隧道结构受力和材料损伤状态的影响,基于混凝土塑性损伤本构、非线性接触理论和Python二次开发,用全周单向受压弹簧模拟地层反力,建立二维管片-接缝不连续模型和三维精细化管片-接缝不连续模型,模拟不同土质中(固结黏性土、硬质黏性土、中等程度黏性)盾构隧道上方不同加卸载水平下的结构变形、材料内力以及材料损伤变化规律,并讨论了螺栓异常工作对结构的影响,得到了不同土质中径向相对位移、接头张开量、材料应力和混凝土损伤因子关于加卸载量的关系曲线,及接头张开量、螺栓应力水平分别在预紧力损失和锈蚀深度两种异常状态的变化曲线.研究结果表明:从结构变形宏观指标给出了3种土质条件下加卸载的荷载安全值分别为510、340 k Pa和170 k Pa;从材料应力水平及损伤程度给出了加卸载的荷载安全值分别为340、170 k Pa和170 k Pa;螺栓预紧力损失对结构的影响主要受拱顶接头张开量控制,螺栓锈蚀对结构的影响主要受螺栓应力水平控制,且锈蚀深度的安全限值为6 mm.展开更多
Based on the Newton-Euler method, the dynamic behaviors of the left and right driving wheels and the robot body for the welding mobile robot were derived. In order to realize the combination control of body turning an...Based on the Newton-Euler method, the dynamic behaviors of the left and right driving wheels and the robot body for the welding mobile robot were derived. In order to realize the combination control of body turning and slider adjustment, the dynamic behaviors of sliders were also investigated. As a result, a systematic and complete dynamic model for the welding mobile robot was constructed. In order to verify the effectiveness of the above model, a sliding mode tracking control method was proposed and simulated, the lateral error stabilizes between -0.2 mm and +0.2 mm, and the total distance of travel for the slider is consistently within 4-2 ram. The simulation results verify the effectiveness of the established dynamic model and also show that the seam tracking controller based on the dynamic model has excellent performance in terms of stability and robustness. Furthermore, the model is found to be very suitable for practical applications of the welding mobile robot.展开更多
文摘为研究加卸载对盾构隧道结构受力和材料损伤状态的影响,基于混凝土塑性损伤本构、非线性接触理论和Python二次开发,用全周单向受压弹簧模拟地层反力,建立二维管片-接缝不连续模型和三维精细化管片-接缝不连续模型,模拟不同土质中(固结黏性土、硬质黏性土、中等程度黏性)盾构隧道上方不同加卸载水平下的结构变形、材料内力以及材料损伤变化规律,并讨论了螺栓异常工作对结构的影响,得到了不同土质中径向相对位移、接头张开量、材料应力和混凝土损伤因子关于加卸载量的关系曲线,及接头张开量、螺栓应力水平分别在预紧力损失和锈蚀深度两种异常状态的变化曲线.研究结果表明:从结构变形宏观指标给出了3种土质条件下加卸载的荷载安全值分别为510、340 k Pa和170 k Pa;从材料应力水平及损伤程度给出了加卸载的荷载安全值分别为340、170 k Pa和170 k Pa;螺栓预紧力损失对结构的影响主要受拱顶接头张开量控制,螺栓锈蚀对结构的影响主要受螺栓应力水平控制,且锈蚀深度的安全限值为6 mm.
基金Project(50605044) supported by the National Natural Science Foundation of China Project(2004DFA02400) supported by the Key International Science and Technology Cooperation Program
文摘Based on the Newton-Euler method, the dynamic behaviors of the left and right driving wheels and the robot body for the welding mobile robot were derived. In order to realize the combination control of body turning and slider adjustment, the dynamic behaviors of sliders were also investigated. As a result, a systematic and complete dynamic model for the welding mobile robot was constructed. In order to verify the effectiveness of the above model, a sliding mode tracking control method was proposed and simulated, the lateral error stabilizes between -0.2 mm and +0.2 mm, and the total distance of travel for the slider is consistently within 4-2 ram. The simulation results verify the effectiveness of the established dynamic model and also show that the seam tracking controller based on the dynamic model has excellent performance in terms of stability and robustness. Furthermore, the model is found to be very suitable for practical applications of the welding mobile robot.