期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于鲁棒高斯混合模型的加速EM算法研究 被引量:7
1
作者 邢长征 赵全颖 +1 位作者 王星 王伟 《计算机应用研究》 CSCD 北大核心 2017年第4期1042-1046,共5页
针对传统鲁棒高斯混合模型EM算法存在模型成分参数难以精确获取最优解以及收敛速度随样本数量的增加而快速降低等问题,提出了一种基于鲁棒高斯混合模型的加速EM算法。该算法采用隐含参量信息熵原理对高斯模型分量个数进行挑选,以及使用A... 针对传统鲁棒高斯混合模型EM算法存在模型成分参数难以精确获取最优解以及收敛速度随样本数量的增加而快速降低等问题,提出了一种基于鲁棒高斯混合模型的加速EM算法。该算法采用隐含参量信息熵原理对高斯模型分量个数进行挑选,以及使用Aitken加速方法减少算法的迭代次数,当接近最优解时,EM步长的变化极为缓慢,这时使用Broyden对称秩1校正公式进行校正,使算法快速收敛,从而能够在很少的迭代次数内精确获取高斯混合模型的模型成分数。该算法通过与传统鲁棒EM算法和无监督的EM算法的聚类结果进行比较,实验证明该算法对初始值的设定并不敏感(成分数c无须预先设定),并且能够降低算法运算时间,提高聚类模型成分数(类簇)的正确率。 展开更多
关键词 EM算法 鲁棒 高斯混合模型 模型成分数 信息熵原理
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部