Following the fundamental characteristics of the porosity windbreak,this study suggests a new numerical investigation method for the wind field of the windbreak based on the porous medium physical model.This method ca...Following the fundamental characteristics of the porosity windbreak,this study suggests a new numerical investigation method for the wind field of the windbreak based on the porous medium physical model.This method can transform the reasonable matching problem of the porosity and windproof performance of the windbreak into a study of the relationship between the resistance coefficient of the porous medium and the aerodynamic load of the train.This study examines the influence of the hole type on the wind field behind the porosity windbreak.Then,the relationship between the resistance coefficient of the porous medium,the porosity of the windbreak,and the aerodynamic loads of the train is investigated.The results show that the porous media physical model can be used instead of the windbreak geometry to study the windbreak-train aerodynamic performance,and the process of using this method is suggested.展开更多
The resistance loss of transportation was studied and the influences of buoyancy layout,mineral content and elastic modulus of flexible hose were investigated based on three-dimensional finite element model of fluid-s...The resistance loss of transportation was studied and the influences of buoyancy layout,mineral content and elastic modulus of flexible hose were investigated based on three-dimensional finite element model of fluid-solid interaction by MSC.MARC/MENTAT software.The numerical results show that the resistance losses increase with the increase of mineral content Cv and velocity of internal fluid v and decrease with the increase of elastic modulus E of flexible hose.The buoyancy layout and the velocity of internal fluid have greater impacts on the resistance losses than the elastic modulus of flexible hose.In order to reduce the resistance losses and improve the efficiency of the deep-ocean mining,Cv and v must be restricted in a suitable range (e.g.10%-25% and 2.5-4 m/s).Effective buoyancy layout (such as Scheme C and D) should be adopted and the suitable material of moderate E should be used for the flexible hose in deep-ocean mining.展开更多
The hot deformation behaviors of GCr15 bearing steel were investigated by isothermal compression tests, performed on a Gleeble-3800 thermal-mechanical simulator at temperatures between 950 ℃ and 1 150 ℃ and strain r...The hot deformation behaviors of GCr15 bearing steel were investigated by isothermal compression tests, performed on a Gleeble-3800 thermal-mechanical simulator at temperatures between 950 ℃ and 1 150 ℃ and strain rates between 0.1 and 10 s-1. The peak stress and peak strain as functions of processing parameters were obtained. The dependence of peak stress on strain rate and temperature obeys a hyperbolic sine equation with a Zener-Hollomon parameter. By regression analysis, in the temperature range of 950-1 150 ℃ and strain rate range of 0.1?10 s?1, the mean activation energy and the stress exponent were determined to be 351kJ/mol and 4.728, respectively. Meanwhile, models of flow stress and dynamic recrystallization (DRX) grain size were also established. The model predictions show good agreement with experimental results.展开更多
A novel quantitative structure-property relationship (QSPR) model for estimating the solution surface tension of 92 organic compounds at 20℃ was developed based on newly introduced atom-type topological indices. Th...A novel quantitative structure-property relationship (QSPR) model for estimating the solution surface tension of 92 organic compounds at 20℃ was developed based on newly introduced atom-type topological indices. The data set contained non-polar and polar liquids, and saturated and unsaturated compounds. The regression analysis shows that excellent result is obtained with multiple linear regression. The predictive power of the proposed model was discussed using the leave-one-out (LOO) cross-validated (CV) method. The correlation coefficient (R) and the leave-one-out cross-validation correlation coefficient (Rcv) of multiple linear regression model are 0.991 4 and 0.991 3, respectively. The new model gives the average absolute relative deviation of 1.81% for 92 substances. The result demonstrates that novel topological indices based on the equilibrium electro-negativity of atom and the relative bond length are useful model parameters for QSPR analysis of compounds.展开更多
Solidification structure is critical in the control of the mechanical properties and quality during the continuous casting process. The thermo-physical properties of 13 Cr steel added some rare metals, such as Mo, V, ...Solidification structure is critical in the control of the mechanical properties and quality during the continuous casting process. The thermo-physical properties of 13 Cr steel added some rare metals, such as Mo, V, Nb, are measured to better understand the solidification structure of 13 Cr bloom. A computational model using CA-FE(cellular automation-finite element) method coupled with heat transfer model is developed to describe the solidification structure in continuous casting process. It is found that the calculated solidification structure is in good agreement with the observed data. The influence of casting speed and superheat on the solidification structure of the bloom is studied in detail. In order to obtain more equiaxed crystal ratio and low degree of the segregation in the bloom, the optimized casting speed 0.6 m/min and superheat less than 25 °C are determined for the caster. Using the optimized manufacturing parameters, these samples are 60% with the equiaxed zone ratio of 8%–10% and below the degree of segregation 1.05.展开更多
Markov random fields(MRF) have potential for predicting and simulating petroleum reservoir facies more accurately from sample data such as logging, core data and seismic data because they can incorporate interclass re...Markov random fields(MRF) have potential for predicting and simulating petroleum reservoir facies more accurately from sample data such as logging, core data and seismic data because they can incorporate interclass relationships. While, many relative studies were based on Markov chain, not MRF, and using Markov chain model for 3D reservoir stochastic simulation has always been the difficulty in reservoir stochastic simulation. MRF was proposed to simulate type variables(for example lithofacies) in this work. Firstly, a Gibbs distribution was proposed to characterize reservoir heterogeneity for building 3-D(three-dimensional) MRF. Secondly, maximum likelihood approaches of model parameters on well data and training image were considered. Compared with the simulation results of MC(Markov chain), the MRF can better reflect the spatial distribution characteristics of sand body.展开更多
The major challenge in printable electronics fabrication is to effectively and accurately control a drop-on-demand(Do D) inkjet printhead for high printing quality. In this work, an optimal prediction model, construct...The major challenge in printable electronics fabrication is to effectively and accurately control a drop-on-demand(Do D) inkjet printhead for high printing quality. In this work, an optimal prediction model, constructed with the lumped element modeling(LEM) and the artificial bee colony(ABC) algorithm, was proposed to efficiently predict the combination of waveform parameters for obtaining the desired droplet properties. For acquiring higher simulation accuracy, a modified dynamic lumped element model(DLEM) was proposed with time-varying equivalent circuits, which can characterize the nonlinear behaviors of piezoelectric printhead. The proposed method was then applied to investigate the influences of various waveform parameters on droplet volume and velocity of nano-silver ink, and to predict the printing quality using nano-silver ink. Experimental results show that, compared with two-dimension manual search, the proposed optimal prediction model perform efficiently and accurately in searching the appropriate combination of waveform parameters for printable electronics fabrication.展开更多
The thermal decomposition temperature is one of the most important parameters to evaluate fire hazard of organic peroxide. A quantitative structure-property relationship model was proposed for estimating the thermal d...The thermal decomposition temperature is one of the most important parameters to evaluate fire hazard of organic peroxide. A quantitative structure-property relationship model was proposed for estimating the thermal decomposition temperatures of organic peroxides. The entire set of 38 organic peroxides was at random divided into a training set for model development and a prediction set for external model validation. The novel local molecular descriptors of AT1, AT2, AT3, AT4, AT5, AT6 and global molecular descriptor of ATC have been proposed in order to character organic peroxides’ molecular structures. An accurate quantitative structure-property relationship (QSPR) equation is developed for the thermal decomposition temperatures of organic peroxides. The statistical results showed that the QSPR model was obtained using the multiple linear regression (MLR) method with correlation coefficient (R), standard deviation (S), leave-one-out validation correlation coefficient (RCV) values of 0.9795, 6.5676 ℃ and 0.9328, respectively. The average absolute relative deviation (AARD) is only 3.86% for the experimental values. Model test by internal leave-one-out cross validation and external validation and molecular descriptor interpretation were discussed. Comparison with literature results demonstrated that novel local and global descriptors were useful molecular descriptors for predicting the thermal decomposition temperatures of organic peroxides.展开更多
In order to simulate the airflow in anhydrous case and the water-air flow in groundwater case, a numerical model of airflow in soil was developed. For the nonlinearity of the governing partial differential equation, t...In order to simulate the airflow in anhydrous case and the water-air flow in groundwater case, a numerical model of airflow in soil was developed. For the nonlinearity of the governing partial differential equation, the corresponding discretization and linearization methods were given. Due to the mass transfer between air-phase and water-phase, phase states of the model elements were constantly changing. Thus, parameters of the model were divided into primary ones and secondary ones, and the primary variables changing with phase states and the secondary variables can be obtained by their functional relationship with the primary variables. Additionally, the special definite condition of this numerical model was illustrated. Two examples were given to simulate the airflow in soil whether there was groundwater or not, and the effectiveness of the numerical model is verified by comparing the results of simulation with that of exoeriment.展开更多
In order to establish a rapid method for regional slope stability analysis under rainfall,matric suction and seepage force were taken into account after obtaining explicit solution of infiltration depth.Moreover,simpl...In order to establish a rapid method for regional slope stability analysis under rainfall,matric suction and seepage force were taken into account after obtaining explicit solution of infiltration depth.Moreover,simplified analysis model under 3D condition was put forward based on identification and division of slope units,as well as modification of sliding direction of each column.The result shows that explicit solution of infiltration depth is of good precision;for the given model,safety factors without taking seepage force into account are 1.82-2.94 times higher;the stagnation point of slope angle is located approximately in the range of(45°,50°);the safety factor changes insignificantly when wetting front is deeper than 2 m;when matric suction changes in the specified range,the maximum variations of safety factor are less than 0.5,which proves that matric suction plays an insignificant role in maintaining slope stability compared to the slope angle and infiltration depth.Incorporated with geographic information system,a practical application of regional slope stability assessment verifies the applicability of the proposed method.展开更多
基金Projects(52302447,52388102,52372369)supported by the National Natural Science Foundation of China。
文摘Following the fundamental characteristics of the porosity windbreak,this study suggests a new numerical investigation method for the wind field of the windbreak based on the porous medium physical model.This method can transform the reasonable matching problem of the porosity and windproof performance of the windbreak into a study of the relationship between the resistance coefficient of the porous medium and the aerodynamic load of the train.This study examines the influence of the hole type on the wind field behind the porosity windbreak.Then,the relationship between the resistance coefficient of the porous medium,the porosity of the windbreak,and the aerodynamic loads of the train is investigated.The results show that the porous media physical model can be used instead of the windbreak geometry to study the windbreak-train aerodynamic performance,and the process of using this method is suggested.
基金Project(2006AA09Z240)supported by the National High Technology Research and Development Program of China
文摘The resistance loss of transportation was studied and the influences of buoyancy layout,mineral content and elastic modulus of flexible hose were investigated based on three-dimensional finite element model of fluid-solid interaction by MSC.MARC/MENTAT software.The numerical results show that the resistance losses increase with the increase of mineral content Cv and velocity of internal fluid v and decrease with the increase of elastic modulus E of flexible hose.The buoyancy layout and the velocity of internal fluid have greater impacts on the resistance losses than the elastic modulus of flexible hose.In order to reduce the resistance losses and improve the efficiency of the deep-ocean mining,Cv and v must be restricted in a suitable range (e.g.10%-25% and 2.5-4 m/s).Effective buoyancy layout (such as Scheme C and D) should be adopted and the suitable material of moderate E should be used for the flexible hose in deep-ocean mining.
基金Project(2001-122) supported by the Youth Science and Technology Elitist Foundation of Dalian, China
文摘The hot deformation behaviors of GCr15 bearing steel were investigated by isothermal compression tests, performed on a Gleeble-3800 thermal-mechanical simulator at temperatures between 950 ℃ and 1 150 ℃ and strain rates between 0.1 and 10 s-1. The peak stress and peak strain as functions of processing parameters were obtained. The dependence of peak stress on strain rate and temperature obeys a hyperbolic sine equation with a Zener-Hollomon parameter. By regression analysis, in the temperature range of 950-1 150 ℃ and strain rate range of 0.1?10 s?1, the mean activation energy and the stress exponent were determined to be 351kJ/mol and 4.728, respectively. Meanwhile, models of flow stress and dynamic recrystallization (DRX) grain size were also established. The model predictions show good agreement with experimental results.
基金Projects(20775010,21075011) supported by the National Natural Science Foundation of ChinaProject(2008AA05Z405) supported by the National High Technology Research and Development Program of China+2 种基金Project(09JJ3016) supported by Hunan Provincial Natural Science Foundation,ChinaProject(09C066) supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(2010CL01) supported by the Foundation of Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation,China
文摘A novel quantitative structure-property relationship (QSPR) model for estimating the solution surface tension of 92 organic compounds at 20℃ was developed based on newly introduced atom-type topological indices. The data set contained non-polar and polar liquids, and saturated and unsaturated compounds. The regression analysis shows that excellent result is obtained with multiple linear regression. The predictive power of the proposed model was discussed using the leave-one-out (LOO) cross-validated (CV) method. The correlation coefficient (R) and the leave-one-out cross-validation correlation coefficient (Rcv) of multiple linear regression model are 0.991 4 and 0.991 3, respectively. The new model gives the average absolute relative deviation of 1.81% for 92 substances. The result demonstrates that novel topological indices based on the equilibrium electro-negativity of atom and the relative bond length are useful model parameters for QSPR analysis of compounds.
基金Projects(51274057,51474057) supported by the National Natural Science Foundation of ChinaProject(2012AA03A508) supported by the High-tech Research and Development Program of China
文摘Solidification structure is critical in the control of the mechanical properties and quality during the continuous casting process. The thermo-physical properties of 13 Cr steel added some rare metals, such as Mo, V, Nb, are measured to better understand the solidification structure of 13 Cr bloom. A computational model using CA-FE(cellular automation-finite element) method coupled with heat transfer model is developed to describe the solidification structure in continuous casting process. It is found that the calculated solidification structure is in good agreement with the observed data. The influence of casting speed and superheat on the solidification structure of the bloom is studied in detail. In order to obtain more equiaxed crystal ratio and low degree of the segregation in the bloom, the optimized casting speed 0.6 m/min and superheat less than 25 °C are determined for the caster. Using the optimized manufacturing parameters, these samples are 60% with the equiaxed zone ratio of 8%–10% and below the degree of segregation 1.05.
基金Project(2011ZX05002-005-006)supported by the National "Twelveth Five Year" Science and Technology Major Research Program,China
文摘Markov random fields(MRF) have potential for predicting and simulating petroleum reservoir facies more accurately from sample data such as logging, core data and seismic data because they can incorporate interclass relationships. While, many relative studies were based on Markov chain, not MRF, and using Markov chain model for 3D reservoir stochastic simulation has always been the difficulty in reservoir stochastic simulation. MRF was proposed to simulate type variables(for example lithofacies) in this work. Firstly, a Gibbs distribution was proposed to characterize reservoir heterogeneity for building 3-D(three-dimensional) MRF. Secondly, maximum likelihood approaches of model parameters on well data and training image were considered. Compared with the simulation results of MC(Markov chain), the MRF can better reflect the spatial distribution characteristics of sand body.
基金Projects(2014AA052101-3,2014AA052102)supported by the National High Technology Research and Development Program of ChinaProjects(51205389,61105067)supported by the National Natural Science Foundation of China
文摘The major challenge in printable electronics fabrication is to effectively and accurately control a drop-on-demand(Do D) inkjet printhead for high printing quality. In this work, an optimal prediction model, constructed with the lumped element modeling(LEM) and the artificial bee colony(ABC) algorithm, was proposed to efficiently predict the combination of waveform parameters for obtaining the desired droplet properties. For acquiring higher simulation accuracy, a modified dynamic lumped element model(DLEM) was proposed with time-varying equivalent circuits, which can characterize the nonlinear behaviors of piezoelectric printhead. The proposed method was then applied to investigate the influences of various waveform parameters on droplet volume and velocity of nano-silver ink, and to predict the printing quality using nano-silver ink. Experimental results show that, compared with two-dimension manual search, the proposed optimal prediction model perform efficiently and accurately in searching the appropriate combination of waveform parameters for printable electronics fabrication.
基金Project(2015SK20823) supported by Science and Technology Project of Hunan Province,ChinaProject(15A001) supported by Scientific Research Fund of Hunan Provincial Education Department,China+2 种基金Project(2017CL06) supported by Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation,ChinaProject(k1403029-11) supported by Science and Technology Project of Changsha City,ChinaProject(CX2015B372) supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘The thermal decomposition temperature is one of the most important parameters to evaluate fire hazard of organic peroxide. A quantitative structure-property relationship model was proposed for estimating the thermal decomposition temperatures of organic peroxides. The entire set of 38 organic peroxides was at random divided into a training set for model development and a prediction set for external model validation. The novel local molecular descriptors of AT1, AT2, AT3, AT4, AT5, AT6 and global molecular descriptor of ATC have been proposed in order to character organic peroxides’ molecular structures. An accurate quantitative structure-property relationship (QSPR) equation is developed for the thermal decomposition temperatures of organic peroxides. The statistical results showed that the QSPR model was obtained using the multiple linear regression (MLR) method with correlation coefficient (R), standard deviation (S), leave-one-out validation correlation coefficient (RCV) values of 0.9795, 6.5676 ℃ and 0.9328, respectively. The average absolute relative deviation (AARD) is only 3.86% for the experimental values. Model test by internal leave-one-out cross validation and external validation and molecular descriptor interpretation were discussed. Comparison with literature results demonstrated that novel local and global descriptors were useful molecular descriptors for predicting the thermal decomposition temperatures of organic peroxides.
基金Project(Y5080022) supported by the Natural Science Foundation of Zhejiang Province,ChinaProject(RC1202) supported by Scientific and Technological Program of Water Resources Department of Zhejiang Province in 2012,ChinaProject(Y201224384) supported by Scientific Research Program of Education Department of Zhejiang Province in 2012,China
文摘In order to simulate the airflow in anhydrous case and the water-air flow in groundwater case, a numerical model of airflow in soil was developed. For the nonlinearity of the governing partial differential equation, the corresponding discretization and linearization methods were given. Due to the mass transfer between air-phase and water-phase, phase states of the model elements were constantly changing. Thus, parameters of the model were divided into primary ones and secondary ones, and the primary variables changing with phase states and the secondary variables can be obtained by their functional relationship with the primary variables. Additionally, the special definite condition of this numerical model was illustrated. Two examples were given to simulate the airflow in soil whether there was groundwater or not, and the effectiveness of the numerical model is verified by comparing the results of simulation with that of exoeriment.
基金Project(kfj110207) supported by Open Fund of Key Laboratory of Road Structure and Material of Ministry of Transport,China
文摘In order to establish a rapid method for regional slope stability analysis under rainfall,matric suction and seepage force were taken into account after obtaining explicit solution of infiltration depth.Moreover,simplified analysis model under 3D condition was put forward based on identification and division of slope units,as well as modification of sliding direction of each column.The result shows that explicit solution of infiltration depth is of good precision;for the given model,safety factors without taking seepage force into account are 1.82-2.94 times higher;the stagnation point of slope angle is located approximately in the range of(45°,50°);the safety factor changes insignificantly when wetting front is deeper than 2 m;when matric suction changes in the specified range,the maximum variations of safety factor are less than 0.5,which proves that matric suction plays an insignificant role in maintaining slope stability compared to the slope angle and infiltration depth.Incorporated with geographic information system,a practical application of regional slope stability assessment verifies the applicability of the proposed method.