期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Spark在集成学习文本情感分析中的应用 被引量:4
1
作者 杨立月 王移芝 《计算机应用与软件》 北大核心 2020年第6期130-134,共5页
针对使用集成学习方法进行大规模文本情感分析实验中计算时间瓶颈的问题,提出基于Spark平台的集成学习模型并行化算法。使用三个数量级的文本进行集成学习的对比实验。结果表明,该算法大幅缩短了文本分类时间,F-score等相关评价指标与... 针对使用集成学习方法进行大规模文本情感分析实验中计算时间瓶颈的问题,提出基于Spark平台的集成学习模型并行化算法。使用三个数量级的文本进行集成学习的对比实验。结果表明,该算法大幅缩短了文本分类时间,F-score等相关评价指标与单机版本接近,且算法的可拓展性良好,大幅降低了模型优化和调参的时间成本。 展开更多
关键词 SPARK 分布式计算 模型并行化 集成学习 文本情感分析
在线阅读 下载PDF
Parallel solving model for quantified boolean formula based on machine learning
2
作者 李涛 肖南峰 《Journal of Central South University》 SCIE EI CAS 2013年第11期3156-3165,共10页
A new parallel architecture for quantified boolean formula(QBF)solving was proposed,and the prediction model based on machine learning technology was proposed for how sharing knowledge affects the solving performance ... A new parallel architecture for quantified boolean formula(QBF)solving was proposed,and the prediction model based on machine learning technology was proposed for how sharing knowledge affects the solving performance in QBF parallel solving system,and the experimental evaluation scheme was also designed.It shows that the characterization factor of clause and cube influence the solving performance markedly in our experiment.At the same time,the heuristic machine learning algorithm was applied,support vector machine was chosen to predict the performance of QBF parallel solving system based on clause sharing and cube sharing.The relative error of accuracy for prediction can be controlled in a reasonable range of 20%30%.The results show the important and complex role that knowledge sharing plays in any modern parallel solver.It shows that the parallel solver with machine learning reduces the quantity of knowledge sharing about 30%and saving computational resource but does not reduce the performance of solving system. 展开更多
关键词 machine learning quantified boolean formula parallel solving knowledge sharing feature extraction performance prediction
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部