期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于多头注意力机制的模型层融合维度情感识别方法 被引量:10
1
作者 董永峰 苏海洋 +1 位作者 刘斌 陶建华 《信号处理》 CSCD 北大核心 2021年第5期885-892,共8页
近年来,情感识别成为了人机交互领域的研究热点问题,而多模态维度情感识别能够检测出细微情感变化,得到了越来越多的关注多模态维度情感识别中需要考虑如何进行不同模态情感信息的有效融合。针对特征层融合存在有效特征提取和模态同步... 近年来,情感识别成为了人机交互领域的研究热点问题,而多模态维度情感识别能够检测出细微情感变化,得到了越来越多的关注多模态维度情感识别中需要考虑如何进行不同模态情感信息的有效融合。针对特征层融合存在有效特征提取和模态同步的问题、决策层融合存在不同模态特征信息的关联问题,本文采用模型层融合策略,提出了基于多头注意力机制的多模态维度情感识别方法,分别构建音频模型、视频模型和多模态融合模型对信息流进行深层特征学习,最后放入双向长短时网络中得到最终情感预测值。所提方法相比于不同基线方法在激活度和愉悦度上均取得了最佳的性能,可以在高层维度对情感信息有效捕捉,进而更好的对音视频信息进行有效融合。 展开更多
关键词 维度情感识别 多模态情感融合 模型层融合 多头注意力机制
在线阅读 下载PDF
基于多模态融合技术的用户画像方法 被引量:14
2
作者 张壮 冯小年 钱铁云 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第1期105-111,共7页
针对当前用户画像工作中各模态信息不能被充分利用的问题,提出一种跨模态学习思想,设计一种基于多模态融合的用户画像模型。首先利用Stacking集成方法,融合多种跨模态学习联合表示网络,对相应的模型组合进行学习,然后引入注意力机制,使... 针对当前用户画像工作中各模态信息不能被充分利用的问题,提出一种跨模态学习思想,设计一种基于多模态融合的用户画像模型。首先利用Stacking集成方法,融合多种跨模态学习联合表示网络,对相应的模型组合进行学习,然后引入注意力机制,使得模型能够学习不同模态的表示对预测结果的贡献差异性。改进后的模型具有精心设计的网络结构和目标函数,能够生成一个由特征级融合和决策级融合组成的联合特征表示,从而可以合并不同模态的相关特征。在真实数据集上的实验结果表明,所提模型优于当前最好的基线方法。 展开更多
关键词 用户画像 模型组合 STACKING 跨模态学习联合表示 多级模型融合
在线阅读 下载PDF
基于多分类器集成和特征融合的用户出境预测 被引量:2
3
作者 张轩 许国良 +2 位作者 魏安 王超 雒江涛 《电讯技术》 北大核心 2021年第5期596-602,共7页
准确地识别有出境意向的用户具有重要的意义,可为出境服务企业的精准营销实施、出境运营的高效管理和政策制定提供决策支持。针对此需求,提出了一种基于多分类器集成和特征融合的用户出境预测方法。首先利用用户的移动终端信息交互数据... 准确地识别有出境意向的用户具有重要的意义,可为出境服务企业的精准营销实施、出境运营的高效管理和政策制定提供决策支持。针对此需求,提出了一种基于多分类器集成和特征融合的用户出境预测方法。首先利用用户的移动终端信息交互数据,挖掘用户的出境相关行为特征和静态特征作为样本特征;其次,通过最小冗余最大相关算法筛选最优特征,并利用贝叶斯优化算法寻找多个分类器最优超参数;最后,基于集成学习思想构建三层架构的用户出境预测模型,模型通过融合前两层分类器的输出特征生成新特征,并将其输入第三层分类器进行学习和预测。实验表明,所提方法的F1值和AUC(Area under the Curve)值分别达到了97.16%和97.21%,对于用户出境具有较高的预测精度。 展开更多
关键词 数据挖掘 移动大数据 用户出境预测 融合模型 特征融合
在线阅读 下载PDF
一种结合显式特征和隐式特征的开发者混合推荐算法 被引量:18
4
作者 于旭 何亚东 +3 位作者 杜军威 王昭哲 江峰 巩敦卫 《软件学报》 EI CSCD 北大核心 2022年第5期1635-1651,共17页
现有开发者推荐算法通过对任务和开发者的显式信息进行挖掘,抽取任务和开发者的显式特征,完成针对任务的开发者推荐.然而,由于显式信息中的描述信息是主观的,往往是不精确的,现有基于显式特征的开发者推荐算法性能不够理想.众包软件开... 现有开发者推荐算法通过对任务和开发者的显式信息进行挖掘,抽取任务和开发者的显式特征,完成针对任务的开发者推荐.然而,由于显式信息中的描述信息是主观的,往往是不精确的,现有基于显式特征的开发者推荐算法性能不够理想.众包软件开发平台除包含大量不精确的描述信息外,还包含客观的、较准确的“任务—开发者”成绩信息,可以有效地推断任务和开发者的隐式特征.考虑到隐式特征作为显式特征的补充,将有效缓解描述信息不精确的难题,提出一种结合显式特征和隐式特征的开发者混合推荐算法.首先,利用任务和开发者的平台可见信息充分提取显式特征,提出面向显式特征的因子分解机(FM)推荐模型建模任务、开发者显式特征和相应评分的映射关系.然后,利用“任务—开发者”成绩矩阵提取隐式特征,提出面向隐式特征的矩阵分解(MF)推荐模型.最后,融合面向显式特征的FM推荐模型和面向隐式特征的MF推荐模型,提出多层感知器融合算法.进一步,针对冷启动问题,首先,基于历史数据,构建多层感知器模型建模显式特征到隐式特征的映射关系.然后,针对冷启动任务或冷启动开发者,通过任务或开发者的显式特征求解相应的隐式特征.最后,基于已训练好的多层感知器融合算法预测评分.在Topcoder软件众包平台的仿真实验表明本文算法相对于对比算法在4种不同测试指标上具有明显的优势. 展开更多
关键词 软件众包开发 开发者推荐 混合推荐算法 冷启动难题 感知器融合模型 因子分解机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部