This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a...This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.展开更多
A lifetime prediction method for high-reliability tantalum (Ta) capacitors was proposed, based on multiple degradation measures and grey model (GM). For analyzing performance degradation data, a two-parameter mode...A lifetime prediction method for high-reliability tantalum (Ta) capacitors was proposed, based on multiple degradation measures and grey model (GM). For analyzing performance degradation data, a two-parameter model based on GM was developed. In order to improve the prediction accuracy of the two-parameter model, parameter selection based on particle swarm optimization (PSO) was used. Then, the new PSO-GM(1, 2, co) optimization model was constructed, which was validated experimentally by conducting an accelerated testing on the Ta capacitors. The experiments were conducted at three different stress levels of 85, 120, and 145℃. The results of two experiments were used in estimating the parameters. And the reliability of the Ta capacitors was estimated at the same stress conditions of the third experiment. The results indicate that the proposed method is valid and accurate.展开更多
文摘This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.
基金Project(Z132012) supported by the Second Five Technology-based Fund in Science and Industry Bureau of ChinaProject(1004GK0032) supported by General Armament Department for the Common Issues of Military Electronic Components,China
文摘A lifetime prediction method for high-reliability tantalum (Ta) capacitors was proposed, based on multiple degradation measures and grey model (GM). For analyzing performance degradation data, a two-parameter model based on GM was developed. In order to improve the prediction accuracy of the two-parameter model, parameter selection based on particle swarm optimization (PSO) was used. Then, the new PSO-GM(1, 2, co) optimization model was constructed, which was validated experimentally by conducting an accelerated testing on the Ta capacitors. The experiments were conducted at three different stress levels of 85, 120, and 145℃. The results of two experiments were used in estimating the parameters. And the reliability of the Ta capacitors was estimated at the same stress conditions of the third experiment. The results indicate that the proposed method is valid and accurate.