期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
带有测量误差的零膨胀负二项模型的统计推断及其应用
1
作者 赵霞 徐泽轩 钟玉洁 《浙江大学学报(理学版)》 北大核心 2025年第6期706-718,共13页
在数据收集过程中,忽略测量误差往往会导致分析结果出现偏差。为此,针对带有测量误差的响应变量,构建了零膨胀负二项模型,讨论了该模型的识别性问题,得到零膨胀负二项模型的潜变量表达式,并基于改进的贝叶斯方法对模型进行了统计推断。... 在数据收集过程中,忽略测量误差往往会导致分析结果出现偏差。为此,针对带有测量误差的响应变量,构建了零膨胀负二项模型,讨论了该模型的识别性问题,得到零膨胀负二项模型的潜变量表达式,并基于改进的贝叶斯方法对模型进行了统计推断。通过多次重复模拟实验,与未考虑测量误差的常规方法及零膨胀泊松模型进行了对比,从不同零值占比和超参数条件及不同误差程度两个角度验证了零膨胀负二项模型的有效性。最后,基于人体乳腺癌基因组数据,实证分析了肿瘤分期和信号通路被激活概率之间的关系。结果表明,带有测量误差的零膨胀负二项模型表现较优。研究丰富了计数模型和测量误差理论,为处理带有测量误差的过度离散性数据提供了新的方法。 展开更多
关键词 测量误差 零膨胀负二项模型 计数数据 模型可识别性 贝叶斯框架
在线阅读 下载PDF
Improved hidden Markov model for speech recognition and POS tagging 被引量:4
2
作者 袁里驰 《Journal of Central South University》 SCIE EI CAS 2012年第2期511-516,共6页
In order to overcome defects of the classical hidden Markov model (HMM), Markov family model (MFM), a new statistical model was proposed. Markov family model was applied to speech recognition and natural language proc... In order to overcome defects of the classical hidden Markov model (HMM), Markov family model (MFM), a new statistical model was proposed. Markov family model was applied to speech recognition and natural language processing. The speaker independently continuous speech recognition experiments and the part-of-speech tagging experiments show that Markov family model has higher performance than hidden Markov model. The precision is enhanced from 94.642% to 96.214% in the part-of-speech tagging experiments, and the work rate is reduced by 11.9% in the speech recognition experiments with respect to HMM baseline system. 展开更多
关键词 hidden Markov model Markov family model speech recognition part-of-speech tagging
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部