期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
一种基于Transformer架构的多层级自动睡眠分期模型
1
作者 金峥 贾克斌 《电子学报》 北大核心 2025年第2期545-557,共13页
睡眠是人体保持健康的重要生理过程,基于多导睡眠图(PolySomnoGraphy,PSG)的睡眠分期是诊疗睡眠疾病和评估睡眠质量的重要依据.人工睡眠分期法在处理大规模PSG数据时存在耗时久、效率低的问题,采用深度学习模型有效表征PSG的自动睡眠分... 睡眠是人体保持健康的重要生理过程,基于多导睡眠图(PolySomnoGraphy,PSG)的睡眠分期是诊疗睡眠疾病和评估睡眠质量的重要依据.人工睡眠分期法在处理大规模PSG数据时存在耗时久、效率低的问题,采用深度学习模型有效表征PSG的自动睡眠分期法显现出广阔的研究前景.针对现有模型未充分考虑PSG片段内波形信息、通道间相关性信息、片段间睡眠转换信息的问题,本文提出一种基于Transformer架构的多层级睡眠分期网络模型(Hierarchical transFormer sleep staging model,HierFormer),采用Transformer编码器有效提取片段内波形特征、通道相关性特征、片段间转换特征,并结合注意力机制综合提升模型对于PSG片段内、通道间、片段间三种视角信号特性的可解释性.基于睡眠集-欧洲数据格式(sleep-European Data Format,sleep-EDF)扩展睡眠数据集开展的实验结果表明:本文模型利用更少的参数量取得优于多种现有基线模型的分期性能,分类准确率、宏平均精确率、宏平均召回率、宏平均F1分数、科恩卡帕系数分别可达到0.807、0.784、0.735、0.750和0.721.通过在三种视角下不同特征编码方式的性能对比和注意力分数的可视化,本文进一步证明了所提模型良好的编码能力和可解释性.本研究旨在为睡眠分期领域的深度学习应用提供新途径和新技术,从而辅助医生提升睡眠疾病诊疗效率. 展开更多
关键词 多导睡眠图(PSG) 自动睡眠分期 深度神经网络 Transformer架构 注意力机制 模型可解释性
在线阅读 下载PDF
基于HA-RF-SHAP的露天煤矿粉尘浓度预测模型 被引量:2
2
作者 金磊 杨晓伟 +4 位作者 张浩 杜勇志 李新鹏 戴春田 周伟 《西安科技大学学报》 CAS 北大核心 2024年第1期74-83,共10页
为了有效预测和控制煤矿粉尘浓度,保障煤矿工人健康及环境安全,以宝日希勒露天煤矿现场粉尘监测数据为基础,使用随机森林对粉尘浓度进行预测,提出了4种启发式智能优化算法优化随机森林超参数的方法,通过RMSE、MAE和皮尔逊相关系数R对模... 为了有效预测和控制煤矿粉尘浓度,保障煤矿工人健康及环境安全,以宝日希勒露天煤矿现场粉尘监测数据为基础,使用随机森林对粉尘浓度进行预测,提出了4种启发式智能优化算法优化随机森林超参数的方法,通过RMSE、MAE和皮尔逊相关系数R对模型进行评价,采用SHAP可解释模型分析影响露天煤矿粉尘浓度的因素。结果表明:PM2.5、PM10、TSP的最优模型分别为GWO-RF、WOA-RF和HHO-RF;超参数调整使模型整体RMSE指标提升约为1~3,MAE提升约为1~2.5,R提升约4%~6%;PM2.5的预测表现最好,训练集与测试集共同作用时,R为0.9463,MAE为3.059,RMSE为4.919,其次是PM10、TSP;单因素作用时,湿度对于该矿粉尘浓度影响最大,双因素同时影响下湿度和气压对粉尘浓度变化影响最大。研究提供了一个有效的粉尘浓度预测方法,可准确预测粉尘浓度并确定粉尘最影响因素,对矿山粉尘管控具有重要参考价值。 展开更多
关键词 露天煤矿 粉尘浓度预测 启发式算法 SHAP 模型可解释性
在线阅读 下载PDF
基于数字钻探与多尺度模型融合的隧道岩体完整性自动解译技术研究及应用 被引量:3
3
作者 梁铭 彭浩 +6 位作者 解威威 韩玉 宋冠先 朱孟龙 黄能豪 周邦鸿 卢振龙 《岩土工程学报》 EI CAS CSCD 北大核心 2024年第2期396-405,共10页
在多岩性与多指标钻探数据收集的基础上,综合考虑解译精度与预报效果,借助机器学习工具,提出一种基于数字钻探与多尺度模型融合的隧道岩体完整性自动解译技术。首先,对原始钻探数据有针对性的进行降噪与等距分割(0.5,1,2 m)等预处理,形... 在多岩性与多指标钻探数据收集的基础上,综合考虑解译精度与预报效果,借助机器学习工具,提出一种基于数字钻探与多尺度模型融合的隧道岩体完整性自动解译技术。首先,对原始钻探数据有针对性的进行降噪与等距分割(0.5,1,2 m)等预处理,形成多尺度、高质量机器学习数据集;然后,进行模型参数自动寻优、训练、评估与可解释性等操作,验证模型的准确性与可靠性;最后,采用加权平均的方法进行多尺度模型解译结果的融合,以增强该技术的工程实用效果。为方便实际工程应用,以上述技术为核心开发轻量化数字钻探智能解译平台,经多条灰岩与砂岩隧道应用结果表明:对比地质雷达与常规钻探解译,多尺度模型融合解译在解译效率、预测效果等方面总体表现优异,可为隧道施工的开挖与支护提供可靠的岩体完整性信息。 展开更多
关键词 隧道工程 超前钻探预报 岩体质量评价 机器学习 模型可解释性
在线阅读 下载PDF
基于EA-BiLSTM-SCSO的多步逐小时参考作物蒸腾量预测方法
4
作者 谢伟明 张钟莉莉 +3 位作者 陶建平 曲明山 魏一博 张石锐 《节水灌溉》 北大核心 2025年第3期57-63,70,共8页
在农业水资源管理领域,参考作物蒸腾量的精确预测对灌溉水高效利用至关重要。当前逐日预测方法未能充分利用日内动态变化信息,限制了预测准确性。为解决该问题,研究提出了一种基于外部注意力机制(EA)的双向长短时记忆网络(BiLSTM)模型,... 在农业水资源管理领域,参考作物蒸腾量的精确预测对灌溉水高效利用至关重要。当前逐日预测方法未能充分利用日内动态变化信息,限制了预测准确性。为解决该问题,研究提出了一种基于外部注意力机制(EA)的双向长短时记忆网络(BiLSTM)模型,使用沙猫群算法(SCSO)优化模型超参数,实现逐小时参考作物蒸腾量预测。首先利用SCSO方法对EA-BiLSTM模型进行优化,优化后的算法在70个epoch后收敛,平均R^(2)升至0.750;进而通过特征相关性分析,将模型输入的特征数据由10个减少为历史ET0、太阳辐射、空气温度、空气湿度和最大风速5个。以北京市昌平区的国家精准农业研究示范基地大田种植区ET0预测为例进行了方法验证,在对未来第7小时的预测中,R^(2)从0.619提高到0.644,获得了更好的预测效果;最后通过对模型可解释性分析证实,历史ET0对预测的贡献最高,贡献率达到了0.043,其次是空气湿度和总辐射。与DT(决策树)、Lasso(最小绝对收缩和选择算法)、LMP(多层感知机)、CNN(卷积神经网络)等预测方法的对比结果表明,采用EA-BiLSTM-SCSO的预测结果在MAE和MSE指标上均获得了最低的误差值,在R^(2)指标上,EA-BiLSTM-SCSO模型平均达到0.722较CNN模型提升了12.6%。研究验证了深度学习与特征工程在提高作物参考蒸腾量逐小时预测精度方面的优势。该方法在智慧灌溉中用于估算作物的水分需求,能够实现对未来灌溉的精准预测,从而制定合理的灌溉计划,提高灌溉水利用效率,进行有效的灌溉用水调度。 展开更多
关键词 BiLSTM 外部注意力机制 沙猫群优化算法 逐小时参考作物蒸腾量预测 模型可解释性
在线阅读 下载PDF
一种改进的可解释SAR图像识别网络 被引量:1
5
作者 李鹏 冯存前 胡晓伟 《空军工程大学学报》 CSCD 北大核心 2023年第4期49-55,共7页
SAR-BagNet模型是一种应用于合成孔径雷达(SAR)图像识别的可解释深度学习模型。为了使SAR-BagNet模型在具有可解释性的同时具有较高的识别精度,以SAR-BagNet模型为基础,在模型框架中加入了空间注意力和坐标注意力机制,并在MSTAR实测数... SAR-BagNet模型是一种应用于合成孔径雷达(SAR)图像识别的可解释深度学习模型。为了使SAR-BagNet模型在具有可解释性的同时具有较高的识别精度,以SAR-BagNet模型为基础,在模型框架中加入了空间注意力和坐标注意力机制,并在MSTAR实测数据集上进行了实验。实验结果表明,空间注意力和坐标注意力机制增强了SAR-BagNet模型的全局信息获取能力,能够在不降低其可解释性的基础上,有效提高模型的识别精度和决策合理性。 展开更多
关键词 深度学习 SAR图像识别 模型可解释性 注意力机制
在线阅读 下载PDF
基于文本引导下的多模态医学图像分析算法 被引量:2
6
作者 樊琳 龚勋 郑岑洋 《电子学报》 EI CAS CSCD 北大核心 2024年第7期2341-2355,共15页
结合胃镜超声和白光内镜可以更准确地识别胃肠道间质瘤.但是现有的多模态方法往往仅关注于图像特征,忽略了诊断文本信息中所包含的语义信息对于精确理解和诊断医学图像的重要性.为此,本文提出一种新的基于文本引导下的多模态医学图像分... 结合胃镜超声和白光内镜可以更准确地识别胃肠道间质瘤.但是现有的多模态方法往往仅关注于图像特征,忽略了诊断文本信息中所包含的语义信息对于精确理解和诊断医学图像的重要性.为此,本文提出一种新的基于文本引导下的多模态医学图像分析算法框架(Text-guided Multi-modal Medical image analysis framework,TMM-Net).TMM-Net使用多阶段的诊断文本来引导模型学习,以提取图像中的关键诊断信息特征,然后通过交叉模态注意力机制促进多模态特征之间的交互.值得注意的是,TMM-Net通过预测病变属性来模拟临床诊断过程,从而增强了可解释性.验证实验在两个中心包含10 025个模态数据对的数据集上进行.结果表明,该方法相比目前最优的GISTs诊断方法精度提升7.7%,同时获得了最高的(Area Under the Curve,AUC)值:0.927,其可解释性可以更好地适合临床需求. 展开更多
关键词 多模态融合 模型可解释性 图像-文本匹配 胃肠道间质瘤 胃镜超声 白光内镜
在线阅读 下载PDF
基于依存句法的图像描述文本生成 被引量:3
7
作者 毕健旗 刘茂福 +1 位作者 胡慧君 代建华 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2021年第3期431-440,共10页
现有图像描述文本生成模型能够应用词性序列和句法树使生成的文本更符合语法规则,但文本多为简单句,在语言模型促进深度学习模型的可解释性方面研究甚少。将依存句法信息融合到深度学习模型以监督图像描述文本生成的同时,可使深度学习... 现有图像描述文本生成模型能够应用词性序列和句法树使生成的文本更符合语法规则,但文本多为简单句,在语言模型促进深度学习模型的可解释性方面研究甚少。将依存句法信息融合到深度学习模型以监督图像描述文本生成的同时,可使深度学习模型更具可解释性。图像结构注意力机制基于依存句法和图像视觉信息,用于计算图像区域间关系并得到图像区域关系特征;融合图像区域关系特征和图像区域特征,与文本词向量通过长短期记忆网络(LSTM),用于生成图像描述文本。在测试阶段,通过测试图像与训练图像集的内容关键词,计算2幅图像的内容重合度,间接提取与测试图像对应的依存句法模板;模型基于依存句法模板,生成多样的图像描述文本。实验结果验证了模型在改善图像描述文本多样性和句法复杂度方面的能力,表明模型中的依存句法信息增强了深度学习模型的可解释性。 展开更多
关键词 图像描述文本生成 依存句法 图像结构注意力 内容重合度 深度模型可解释性
在线阅读 下载PDF
基于加权残差聚类的建筑负荷预测区间估计 被引量:7
8
作者 章超波 刘永政 +3 位作者 李宏波 赵阳 张丽珠 王子豪 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第5期930-937,共8页
提出基于加权残差聚类的建筑负荷预测区间估计方法,旨在对建筑负荷预测模型的不确定性进行定量评估.使用Shapley additive explanations方法量化负荷预测模型的每个输入对输出的贡献程度.基于得到的贡献程度对模型输入进行加权聚类,获... 提出基于加权残差聚类的建筑负荷预测区间估计方法,旨在对建筑负荷预测模型的不确定性进行定量评估.使用Shapley additive explanations方法量化负荷预测模型的每个输入对输出的贡献程度.基于得到的贡献程度对模型输入进行加权聚类,获得不同聚类簇中的模型历史残差分布.根据不同聚类簇中的残差分布估计模型的预测区间.在深圳某办公建筑1 a的冷负荷数据集上进行验证.结果表明,与传统不对输入进行加权的方法相比,该方法可以显著提高预测区间的估计精度.期望得到的预测区间与该方法得到的预测区间的平均覆盖误差为1.87%,而传统方法的平均覆盖误差为2.27%.该方法可以用于估计任何数据驱动的建筑负荷预测模型的不确定性,从而为优化控制和故障诊断提供更可靠的负荷预测模型. 展开更多
关键词 建筑负荷预测 区间估计 数据驱动模型 模型可解释性 残差聚类
在线阅读 下载PDF
基于人工智能的电子信息系统软件缺陷预测与检测技术研究
9
作者 杨新宇 《消费电子》 2025年第11期80-82,共3页
现阶段,随着我国信息技术的不断飞速发展,我国电子信息系统类软件的安全性越来越受到大众的关注。并且,在人工智能技术背景下,电子信息系统软件缺陷预测与检测技术的深入研究,对于提升整体工作的质量和效率发挥着极为重要的作用。本文... 现阶段,随着我国信息技术的不断飞速发展,我国电子信息系统类软件的安全性越来越受到大众的关注。并且,在人工智能技术背景下,电子信息系统软件缺陷预测与检测技术的深入研究,对于提升整体工作的质量和效率发挥着极为重要的作用。本文从人工智能驱动的软件缺陷预测技术体系着手分析。进一步研究了智能缺陷检测技术框架以及相关技术挑战与解决路径,希望能够为广大从业者提供一些工作思路和工作经验。 展开更多
关键词 软件缺陷预测 人工智能检测 深度学习 测试自动化 可解释性模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部