期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
工业互联网平台主导的创新生态系统价值共创机制——以海尔卡奥斯为例 被引量:7
1
作者 王水莲 付晗涵 《科技进步与对策》 北大核心 2025年第2期31-39,共9页
工业互联网平台主导的创新生态系统长效发展成为重要议题,也是中国数字经济与实体经济融合的关键。以卡奥斯工业互联网平台为案例研究对象,探索工业互联网平台主导的创新生态系统价值共创机制。研究发现,价值共创机制包括模块化机制、... 工业互联网平台主导的创新生态系统长效发展成为重要议题,也是中国数字经济与实体经济融合的关键。以卡奥斯工业互联网平台为案例研究对象,探索工业互联网平台主导的创新生态系统价值共创机制。研究发现,价值共创机制包括模块化机制、场景化机制和互补机制;创新生态系统中,模块化机制、场景化机制和互补机制高效整合生态资源,提升生态数字化能力,从而形成创新生态系统的同边网络效应、跨边网络效应和跨领域网络效应。研究结果有助于丰富创新生态系统价值共创的研究情境,完善工业互联网平台理论研究,为我国工业互联网平台生态化发展提供理论借鉴。 展开更多
关键词 创新生态系统 工业互联网平台 价值共创 模块机制 场景化机制
在线阅读 下载PDF
基于挤压激励的轻量化注意力机制模块 被引量:8
2
作者 吕振虎 许新征 张芳艳 《计算机应用》 CSCD 北大核心 2022年第8期2353-2360,共8页
针对向卷积神经网络(CNN)中嵌入注意力机制模块以提高模型应用精度导致参数和计算量增加的问题,提出基于挤压激励的轻量化高度维度挤压激励(HD-SE)模块和宽度维度挤压激励(WD-SE)模块。为了充分利用特征图中潜在的信息,HD-SE对卷积层输... 针对向卷积神经网络(CNN)中嵌入注意力机制模块以提高模型应用精度导致参数和计算量增加的问题,提出基于挤压激励的轻量化高度维度挤压激励(HD-SE)模块和宽度维度挤压激励(WD-SE)模块。为了充分利用特征图中潜在的信息,HD-SE对卷积层输出的特征图在高度维度上进行挤压激励操作,获得高度维度上的权重信息;而WD-SE在宽度维度上进行挤压激励操作,以得到特征图宽度维度上的权重信息;然后,将得到的权重信息分别应用于对应维度的特征图张量,以提高模型的应用精度。将HD-SE与WD-SE分别嵌入VGG16、ResNet56、MobileNetV1和MobileNetV2模型中,在CIFAR10和CIFAR100数据集上进行的实验结果表明,与挤压激励(SE)模块、协调注意力(CA)模块、卷积块注意力模块(CBAM)和高效通道注意力(ECA)模块等先进的注意力机制模块相比,HD-SE与WDSE在向网络模型中增加的参数和计算量更少的同时得到的精度相似或者更高。 展开更多
关键词 卷积神经网络 挤压激励 轻量化 多维度 注意力机制模块
在线阅读 下载PDF
基于注意力机制轻量化模型的植物病害识别方法
3
作者 苏航 陈旭昊 +3 位作者 寿德荣 张朝阳 许彪 孙丙宇 《江苏农业学报》 CSCD 北大核心 2024年第8期1389-1399,共11页
针对现有植物病害识别模型存在响应速度慢、参数量多、计算机内存资源消耗大等问题,本研究提出了一种轻量化神经网络模型,该模型由特征提取层、特征增强层和分类器组成。为了减小模型大小并提高网络响应速度,在特征提取层中使用深度可... 针对现有植物病害识别模型存在响应速度慢、参数量多、计算机内存资源消耗大等问题,本研究提出了一种轻量化神经网络模型,该模型由特征提取层、特征增强层和分类器组成。为了减小模型大小并提高网络响应速度,在特征提取层中使用深度可分离卷积进行特征提取。为了防止网络传播过程中的梯度消失并增强病害像素特征融合,在特征提取层中引入了大卷积核倒置残差结构(IRBCKS)模块。此外,在特征增强层集成了轻量级卷积块注意力模块(CBAM)注意力机制,以捕捉植物病害相关图像中像素之间的关系,增强关键信息的提取。最后,采用剪枝技术剔除模型中冗余特征信息,从而再次减少模型参数量,形成最终的轻量级网络模型Cut-MobileNet。为验证该模型的先进性,将其与轻量化模型(MobileNet V2、SqueezeNet、GoogLeNet)和非轻量化模型(Vision Transformer、AlexNet)进行性能对比,研究结果表明,Cut-MobileNet在浮点运算量、准确率、单张图片推理时间、参数量、F1值和模型大小等性能指标上都取得了较优的效果。 展开更多
关键词 模型剪枝 卷积块注意力模块(CBAM)注意力机制 大卷积核倒置残差结构(IRBCKS)模块 植物病害 轻量化网络
在线阅读 下载PDF
基于U-Net的工件轮廓提取方法的研究
4
作者 郭凯旋 王吉芳 +1 位作者 刘相权 王凯 《组合机床与自动化加工技术》 北大核心 2025年第4期8-12,共5页
工件轮廓提取是实现工件识别和定位的重要前提,为解决传统机器视觉算法对复杂环境中的工件轮廓提取不完整、易受干扰的问题,提出了一种改进U-Net的工件轮廓分割模型,将VGG16网络应用于解码器部分,增加网络特征提取能力;将ECA注意力机制... 工件轮廓提取是实现工件识别和定位的重要前提,为解决传统机器视觉算法对复杂环境中的工件轮廓提取不完整、易受干扰的问题,提出了一种改进U-Net的工件轮廓分割模型,将VGG16网络应用于解码器部分,增加网络特征提取能力;将ECA注意力机制引入每个跳跃连接层中,提高了工件轮廓特征在模型中的权重;在编码器末端引入ASPP空洞空间卷积池化金字塔模块,以获取高层特征图中不同尺度的特征信息,进而提高目标的分割精度。试验结果表明,EVA-UNet模型在交并比、召回率、精准率和综合性能F1分数4个方面表现良好,对工件轮廓提取能力优于其他经典模型,能够为实现复杂环境下工件轮廓提取提供良好的解决方案。 展开更多
关键词 注意力机制模块 轮廓提取 语义分割 工件轮廓
在线阅读 下载PDF
基于CNN-CBAM-LSTM的稳态视觉诱发电位脑电信号识别方法
5
作者 巩炫麟 陶庆 +1 位作者 苏娜 马金旭 《科学技术与工程》 北大核心 2025年第10期4175-4182,共8页
在使用传统方法处理稳态视诱发电位(steady-state visual evoked potentials,SSVEP)的脑电信号时,特征提取的准确性和充分性存在不足,影响信号的识别准确率。为此提出了一种基于卷积神经网路(convolutional neural networks,CNN)与卷积... 在使用传统方法处理稳态视诱发电位(steady-state visual evoked potentials,SSVEP)的脑电信号时,特征提取的准确性和充分性存在不足,影响信号的识别准确率。为此提出了一种基于卷积神经网路(convolutional neural networks,CNN)与卷积注意力机制模块(convolutional block attention module,CBAM)和长短时记忆网络(long short-term memory,LSTM)的信号分类识别方法。以CNN为基础框架,通过引入注意力机制对通道及空间特征进行充分提取,加入LSTM提高对时序特征的提取能力,实现对SSVEP信号的目标识别。实验结果显示,所提方法能够充分有效的提取各级特征且识别准确率较高,相比于典型相关分析方法(canonical correlation analysis,CCA)、CNN、CBAM-LSTM、CNN-CBAM识别准确率分别提高了5.3%、2.95%、2.27%、1.71%,可见该模型对SSVEP信号的分类识别有较好的效果。 展开更多
关键词 稳态视觉诱发电位 卷积神经网络 卷积注意力机制模块 长短时记忆网络 目标识别
在线阅读 下载PDF
嵌入模块化程序设计技术 被引量:1
6
作者 方志刚 吴晓波 《计算机技术》 CSCD 1997年第5期101-103,共3页
嵌入模块化程序设计技术是传统模块的程序设计技术的基础提出的,本文结合实例说明了该技术具有更好的可移植性,可扩充性,可维护性及非过程性等优点。
关键词 嵌入模块 模块嵌入机制 程序设计
在线阅读 下载PDF
前视声呐图像小目标智能感知与跟踪算法
7
作者 贾昊明 于晓阳 周天 《哈尔滨工程大学学报》 北大核心 2025年第1期129-137,共9页
针对传统深度学习模型对小目标感知能力有限的难题,本研究首先提出基于注意力机制的YOLOv5_cs检测模型,在此基础上通过声呐图像公开数据集开展模型预训练,利用迁移学习来增强网络对目标的特征提取能力。联合DeepSORT应用于多目标跟踪任... 针对传统深度学习模型对小目标感知能力有限的难题,本研究首先提出基于注意力机制的YOLOv5_cs检测模型,在此基础上通过声呐图像公开数据集开展模型预训练,利用迁移学习来增强网络对目标的特征提取能力。联合DeepSORT应用于多目标跟踪任务中,通过对真实水池实验中采集的多目标跟踪数据集的测试结果分析表明:本研究提出的算法相比于传统YOLOv5联合DeepSORT算法,多项评价指标得到提升,其中多目标跟踪准确度指标提升了4.85%,多目标跟踪精度指标提升了0.95%,身份识别精度得分指标提升了2.66%。同时提出的算法较好地解决了目标形态发生变化条件下目标检测效果不佳导致的错跟、漏跟等问题,具有较高实际应用潜力。 展开更多
关键词 前视声呐图像 多目标跟踪 深度学习 注意力机制模块 空间转深度 非跨步卷积 迁移学习 YOLOv5_cs
在线阅读 下载PDF
高光谱成像技术结合深度学习的藕粉识别和掺假检测
8
作者 彭健恒 胡新军 +4 位作者 张嘉洪 田建平 陈满骄 黄丹 罗惠波 《光谱学与光谱分析》 北大核心 2025年第6期1759-1767,共9页
藕粉营养价值高,工艺复杂,一些不法商家受到利益的驱使,利用廉价的普通淀粉冒充藕粉或在藕粉中掺入普通淀粉。传统的藕粉真伪检查方法耗时耗力,具有破坏性。高光谱成像技术凭借其快速、无损且精确的优点在食品安全检测领域得到广泛应用... 藕粉营养价值高,工艺复杂,一些不法商家受到利益的驱使,利用廉价的普通淀粉冒充藕粉或在藕粉中掺入普通淀粉。传统的藕粉真伪检查方法耗时耗力,具有破坏性。高光谱成像技术凭借其快速、无损且精确的优点在食品安全检测领域得到广泛应用。因此,为了准确区分藕粉和其他普通淀粉并识别掺假藕粉,提出了一种高光谱成像技术结合深度学习的快速鉴别藕粉真伪的方法。利用高光谱成像技术采集900~1700 nm波段范围内的纯藕粉、四种普通淀粉以及掺假淀粉的高光谱图像。在纯藕粉和四种普通淀粉的高光谱图像中划分若干个感兴趣区域(ROI),计算每个ROI的平均反射率作为构建分类模型的原始光谱数据。去除掉原始光谱前后受噪音影响的异常波段,保留了940~1675 nm之间的443个波段。接着通过孤立森林(IF)算法剔除掉光谱数据中的异常数据。为提高模型训练效率,采用竞争性自适应重加权算法(CARS)、自助软收缩算法(BOSS)和通道注意力模块(CAMM)三种方法分别从443个波段中提取出45、32和12个特征波长。基于提取出的特征波长的光谱数据,构建了偏最小二乘判别(PLS-DA)分类模型,其中CAMM-PLS-DA模型识别效果最好,测试集准确率达到了95.25%。为了确定最佳分类模型,基于CAMM提取不同特征波长数目下的光谱数据,建立PLS-DA、支持向量机(SVM)和卷积神经网络(CNN)分类模型,其中CAMM-CNN模型的分类性能最好,测试集准确率最高达到了99.69%。为进一步检验CAMM-CNN模型对掺假藕粉的鉴别能力,将掺假藕粉高光谱图像所有像素点的光谱数据输入到训练好的CAMM-CNN模型中进行判别,从可视化图像看出,模型成功识别出掺假藕粉中的多种普通淀粉。研究结果表明,高光谱成像技术结合深度学习方法可以有效地应用于藕粉的真伪鉴别,这为打击藕粉掺假行为和保障藕粉安全提供了一种新的检测手段。 展开更多
关键词 藕粉 掺假 高光谱成像技术 深度学习 通道注意力机制模块 卷积神经网络
在线阅读 下载PDF
基于CABFAM-Transformer的输电线路在线测距实测行波预分类方法
9
作者 唐玉涛 束洪春 +3 位作者 刘皓铭 苏萱 韩一鸣 代月 《电工技术学报》 北大核心 2025年第5期1455-1470,共16页
行波采集装置是电力系统保护与测距的重要设备,广泛应用于110 kV及以上输电线路,且正向配电网延拓。由于启动灵敏,非故障信息的采集给故障辨识与行波测距带来了挑战。该文提出了一种基于卷积注意力机制的特征聚合模块(CABFAM)与自适应Tr... 行波采集装置是电力系统保护与测距的重要设备,广泛应用于110 kV及以上输电线路,且正向配电网延拓。由于启动灵敏,非故障信息的采集给故障辨识与行波测距带来了挑战。该文提出了一种基于卷积注意力机制的特征聚合模块(CABFAM)与自适应Transformer模型的输电线路实测故障性质识别方法。首先,通过CBAM机制增强卷积层提取特征信息的表达与理解能力;然后,构建自适应编码层级调整机制的Transformer模型库,以获取多层次差异化特征信息;最后,利用云南电网110~220 kV输电线路的5076条实测数据及220 kV DL站H-P线的15924条伪实测数据进行训练与测试,针对16种典型行波数据进行分类。测试结果表明,该方法降低了模型参数量,提高了准确度,算法的多个关键指标均有不同幅度的提升,表现出优异的检测精度与识别效率。 展开更多
关键词 行波采集装置 基于卷积注意力机制的特征聚合模块 CABFAM 自适应Transformer 实测数据故障辨识
在线阅读 下载PDF
多注意力机制网络卫星图像分割算法 被引量:2
10
作者 丁成 翁理国 +3 位作者 夏旻 崔逸尘 钱俊豪 刘佳 《计算机工程与应用》 CSCD 北大核心 2021年第2期223-229,共7页
针对深度学习的语义分割法,在卫星图像分割中对半岛、小岛和湖泊细小支流的边缘信息提取丢失问题,提出了多注意力机制网络(MA-Net)卫星图像分割算法,弥补了边缘信息提取丢失问题。该算法的框架采用了端到端的对称结构,由编码和解码两部... 针对深度学习的语义分割法,在卫星图像分割中对半岛、小岛和湖泊细小支流的边缘信息提取丢失问题,提出了多注意力机制网络(MA-Net)卫星图像分割算法,弥补了边缘信息提取丢失问题。该算法的框架采用了端到端的对称结构,由编码和解码两部分组成。编码部分采用改进的VGG16网络提取湖泊的纹理特征,解码部分引入全局平均池化注意力融合机制(GPA),能够有效融合编码部分提取的纹理特征,得到高分辨率的卫星图像特征图。在网络的输出端加入注意力机制模块(Attention),充分提取湖泊边缘信息,有效分割出半岛、小岛和湖泊细小支流。实验结果表明,该模型相比现有语义分割算法,具有更好的分割精度,各项分割指标都有提升,并且在公共数据集City Scapes上验证了模型具有通用性。 展开更多
关键词 语义分割 卫星图像分割 编码和解码 注意力机制模块
在线阅读 下载PDF
基于图模型与注意力机制的室外场景点云分割模型 被引量:2
11
作者 廉飞宇 张良 +2 位作者 王杰栋 靳于康 柴玉 《计算机应用》 CSCD 北大核心 2023年第12期3911-3917,共7页
针对在多对象且空间拓扑关系复杂的室外场景环境中相似地类区分难的问题,提出一种结合图模型与注意力机制模块的A-Edge-SPG(Attention-EdgeConv SuperPoint Graph)图神经网络。首先,利用图割和几何特征结合的方法对超点进行分割;其次,... 针对在多对象且空间拓扑关系复杂的室外场景环境中相似地类区分难的问题,提出一种结合图模型与注意力机制模块的A-Edge-SPG(Attention-EdgeConv SuperPoint Graph)图神经网络。首先,利用图割和几何特征结合的方法对超点进行分割;其次,在超点内部构造局部邻接图,从而在捕获场景中点云的上下文信息的同时利用注意力机制模块凸显关键信息;最后,构建超点图(SPG)模型,并采用门控循环单元(GRU)聚合超点和超边特征,实现对不同地类点云间的精确分割。在Semantic3D数据集上对A-Edge-SPG模型和SPG-Net(SPG neural Network)模型的语义分割效果进行比较分析。实验结果表明,相较于SPG模型,A-Edge-SPG模型在总体分割精度(OA)、平均交并比(mIoU)和平均精度均值(mAA)上分别提升了1.8、5.1和2.8个百分点,并且在高植被、矮植被等相似地类的分割精度上取得了明显的提升,改善了相似地类间语义分割的效果。 展开更多
关键词 语义分割 室外场景 局部特征 注意力机制模块 局部邻接图 图模型
在线阅读 下载PDF
嵌入注意力机制残差网络的人脸表情识别方法 被引量:5
12
作者 钟瑞 蒋斌 +1 位作者 李南星 崔晓梅 《计算机工程与应用》 CSCD 北大核心 2023年第11期88-97,共10页
针对非可控环境下人脸图像易受光照、姿态变化等复杂因素的影响,进而造成人脸表情识别中人脸检测率低、表情识别精度差的问题,提出了一种嵌入注意力机制残差网络的表情识别方法。在人脸检测阶段,采用改进的RetinaFace算法完成多视角人... 针对非可控环境下人脸图像易受光照、姿态变化等复杂因素的影响,进而造成人脸表情识别中人脸检测率低、表情识别精度差的问题,提出了一种嵌入注意力机制残差网络的表情识别方法。在人脸检测阶段,采用改进的RetinaFace算法完成多视角人脸检测,获取人脸区域。在特征提取阶段,使用ResNet-50作为特征提取的主干网络。将预处理后的人脸图片,依次通过该网络的通道注意力网络和空间注意力网络,显式地建模全局图像的相互依赖性。在虚线残差单元的快捷连接中,加入平均池化层进行下采样操作,通过微调残差模块的操作,加强输入特征之间的映射,使提取的表情特征能够较完整地在网络之间传递,以减小特征信息的损失;在网络中再次传入卷积注意力机制模块,增强局部表情特征的通道维度信息和空间维度信息,加强特征图中与表情相关性高的特征区域的重点信息,同时抑制特征图中无关区域的干扰,进而加快网络的收敛速度,提高表情识别率。与基线算法相比,该方法在RAF-DB和FER2013表情数据集上分别取得了87.65%和73.57%的准确率。 展开更多
关键词 注意力机制 残差网络 表情识别 卷积注意力机制模块 RetinaFace
在线阅读 下载PDF
基于Deeplab V3 Plus的自适应注意力机制图像分割算法 被引量:14
13
作者 杨贞 彭小宝 +1 位作者 朱强强 殷志坚 《计算机应用》 CSCD 北大核心 2022年第1期230-238,共9页
针对Deeplab V3 Plus在下采样操作中图像细节信息和小目标信息过早丢失的问题,提出了一种基于Deeplab V3 Plus网络架构的自适应注意力机制图像语义分割算法。首先,在Deeplab V3 Plus主干网络的输入层、中间层和输出层均嵌入注意力机制模... 针对Deeplab V3 Plus在下采样操作中图像细节信息和小目标信息过早丢失的问题,提出了一种基于Deeplab V3 Plus网络架构的自适应注意力机制图像语义分割算法。首先,在Deeplab V3 Plus主干网络的输入层、中间层和输出层均嵌入注意力机制模块,并且引入一个权重值与每个注意力机制模块相乘,以达到约束注意力机制模块的目的;其次,在PASCAL VOC2012公共分割数据集上训练嵌入注意力模块的Deeplab V3 Plus,以此手动获取注意力机制模块权重值(经验值);然后,探索输入层、中间层和输出层中注意力机制模块的多种融合方式;最后,将注意力机制模块的权重值更改为反向传播自动更新,从而得到注意力机制模块的最优权值和最优分割模型。实验结果表明,与原始Deeplab V3 Plus网络结构相比,引入自适应注意力机制的Deeplab V3 Plus网络结构在PASCAL VOC2012公共分割据集和植物虫害数据集上的平均交并比(MIOU)分别提高了1.4个百分点和0.7个百分点。 展开更多
关键词 语义分割 下采样操作 自适应注意力机制 注意力机制模块权重值 DeeplabV3 Plus
在线阅读 下载PDF
基于深度主动学习与CBAM的细粒度菊花表型识别 被引量:6
14
作者 袁培森 丁毅飞 徐焕良 《农业机械学报》 EI CAS CSCD 北大核心 2024年第2期258-267,共10页
针对菊花种类繁多,花型差别细微,准确标注比较困难的问题,基于深度主动学习与混合注意力机制模块(Convolutional block attention module,CBAM),提出了一种标号数据不足情况下的菊花表型智能识别方法和框架。首先,通过主动学习策略基于... 针对菊花种类繁多,花型差别细微,准确标注比较困难的问题,基于深度主动学习与混合注意力机制模块(Convolutional block attention module,CBAM),提出了一种标号数据不足情况下的菊花表型智能识别方法和框架。首先,通过主动学习策略基于最优标号和次优标号法(Best vs second-best,BvSB)在未标记菊花样本中选取信息量较大的样本进行标记,并将标记后的样本放入训练样本中;其次,使用深度卷积神经网络ResNet50作为本文的主干网络训练标记样本,引入混合注意力机制模块CBAM,使模型能够更为准确地提取细粒度图像中的高层语义信息;最后,用更新后的训练样本继续训练分类模型,直到模型达到迭代次数后停止。实验结果表明,该方法在少量菊花标记样本下,精确率、召回率和F1值分别达到93.66%、93.15%和93.41%。本文方法可为标号数据不足情况下的菊花等花卉智能化识别提供技术支撑。 展开更多
关键词 菊花表型 细粒度图像识别 主动学习 ResNet50 注意力机制模块
在线阅读 下载PDF
基于机器视觉的航标倾斜检测方法 被引量:1
15
作者 赵建森 赵婧莹 +1 位作者 韩冰 陈艳君 《中国航海》 CSCD 北大核心 2024年第4期44-50,共7页
航标受风浪、气候或撞击等因素的影响,往往导致倾斜,而大幅度倾斜可能会引起航标本体的损坏。传统的航标巡检方法主要依靠人力,不仅耗时耗力,而且苛刻的作业条件威胁着作业人员的安全。因此,设计一种智能检测航标损坏的方法对保障作业... 航标受风浪、气候或撞击等因素的影响,往往导致倾斜,而大幅度倾斜可能会引起航标本体的损坏。传统的航标巡检方法主要依靠人力,不仅耗时耗力,而且苛刻的作业条件威胁着作业人员的安全。因此,设计一种智能检测航标损坏的方法对保障作业人员安全和提高海事监管效率具有重要意义。为解决在海面实际作业中,硬件设备计算能力有限,导致检测速度过慢、精度低等问题,提出一种基于机器视觉的轻量化航标倾斜检测方法。在单阶段检测网络YOLOv5的基础上,引入环形平滑标签(CSL)技术,将角度回归问题转变为分类问题,提出R-YOLO航标倾斜检测模型;采用轻量化GhostNet特征提取模块减少模型参数以适用实际作业环境;加入注意力机制模块(CBAM)以提高航标倾斜检测模型精度。试验结果表明:改进的倾斜检测方法与R-YOLO相比,精度提升5.6%,参数量减少2.74×10^(6),最高的检测精度可达93.2%。 展开更多
关键词 航标倾斜检测 R-YOLO Ghost模块 注意力机制模块
在线阅读 下载PDF
融合Inception V1-CBAM-CNN的轴承剩余寿命预测模型 被引量:7
16
作者 余江鸿 彭雄露 +2 位作者 刘涛 杨文 叶帅 《机电工程》 北大核心 2024年第1期107-114,共8页
针对现有的滚动轴承剩余寿命(RUL)预测方法精度低、轴承健康指标(HI)构建困难等问题,提出了一种基于卷积神经网络(CNN)并融合Inception V1模块和卷积注意力机制模块(CBAM)的滚动轴承RUL预测模型。首先,在CNN中添加了CBAM机制,并进行了... 针对现有的滚动轴承剩余寿命(RUL)预测方法精度低、轴承健康指标(HI)构建困难等问题,提出了一种基于卷积神经网络(CNN)并融合Inception V1模块和卷积注意力机制模块(CBAM)的滚动轴承RUL预测模型。首先,在CNN中添加了CBAM机制,并进行了加权处理,在通道和空间维度对重要特征进行了强化,对次要特征进行了抑制,通过添加改进的InceptionV1模块,提高了CNN通道间信息交互水平,全面提取了退化特征;然后,进行了网络优化,采用全局最大池化(GMP)方法对模型进行了简化,采用Dropout和批量归一化(BN)方法,避免了过拟合,提高了精度,且克服了训练时出现的梯度消失问题;最后,对数据进行了处理,将降噪后的信号重组为三维张量,将其作为HI,构建了退化标签,引入了评价指标,采用PHM2012轴承数据集进行了实验验证,在3种工况下将其与深度神经网络(DNN)、CNN方法、结合注意力机制的残差网络方法(ResNet)进行了对比。研究结果表明:该方法在变负载条件下的平均RMSE为0.033,较其他方法的RMSE值分别降低了86%、78%和69%,在预测精度和泛化能力方面具有明显优势。 展开更多
关键词 滚动轴承 剩余使用寿命 Inception V1模块 卷积注意力机制模块 卷积神经网络 全局最大池化 批量归一化
在线阅读 下载PDF
融合膨胀卷积与ECA的钢材缺陷检测算法 被引量:1
17
作者 曹义亲 曹鑫晨 《计算机工程与设计》 北大核心 2024年第11期3312-3319,共8页
针对带钢材料表面缺陷检测中感受野受限导致目标漏检率高的问题,基于YoloX-s模型提出一种膨胀卷积与注意力机制融合的目标检测算法。在Backbone部分采用SPPF结构替换SPP结构,在Neck部分引入混合膨胀卷积模块用以增大检测的感受野,嵌入... 针对带钢材料表面缺陷检测中感受野受限导致目标漏检率高的问题,基于YoloX-s模型提出一种膨胀卷积与注意力机制融合的目标检测算法。在Backbone部分采用SPPF结构替换SPP结构,在Neck部分引入混合膨胀卷积模块用以增大检测的感受野,嵌入注意力机制ECA-net模块,保留特征图更多的通道信息,减少漏检率。后处理阶段采用CIoU损失函数,提高模型召回率。实验结果表明,改进算法在NEU-DET数据集上的mAP达到80.8%,较原模型提高4.6%,检测速度达到160 f/s,在带钢材料表面缺陷检测中具有一定的使用价值。 展开更多
关键词 带钢材料 缺陷检测 空间金字塔池化改进 膨胀卷积 注意力机制模块 损失函数 东北大学热轧带钢表面缺陷数据集
在线阅读 下载PDF
基于改进扩散模型的图像去雨方法 被引量:1
18
作者 钱枫 胡桂铭 +3 位作者 祝能 邓明星 王洁 许小伟 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第1期59-66,共8页
针对图像去雨过度、泛化性差的问题,提出运用改进扩散模型进行单幅图像去雨的方法。通过前向过程添加高斯噪声使数据变为高斯分布,设计残差模块双输入信息通道、添加ECA(efficient channel attention)通道注意力机制模块以构建噪声估计... 针对图像去雨过度、泛化性差的问题,提出运用改进扩散模型进行单幅图像去雨的方法。通过前向过程添加高斯噪声使数据变为高斯分布,设计残差模块双输入信息通道、添加ECA(efficient channel attention)通道注意力机制模块以构建噪声估计网络,实现全局平均池化而不降低维数,从而捕获局部跨通道交互信息;利用模型网络进行反向采样,预测并剔除雨痕噪声,实现图像去雨。最后通过模拟雨滴数据集和Rain100数据集对改进的扩散模型与其他4种算法进行对比实验测试,实验结果表明改进的扩散模型能够有效去除雨痕,其中雨滴和雨线的峰值信噪比分别为30.328 5和34.896 5,结构相似性分别为0.927 1和0.962 0;自制真实雨图数据集,使用YOLOv7算法对去雨后的图像进行车辆检测,结果表明采用改进的扩散模型去雨能够有效提高车辆检测置信度,进一步验证了所提方法具有良好的去雨效果和泛化能力。 展开更多
关键词 扩散模型 图像去雨 注意力机制模块 车辆检测
在线阅读 下载PDF
基于时序特征灰度图与多任务学习的综合能源负荷短期预测 被引量:4
19
作者 倪建辉 张菁 +2 位作者 张昊立 陈龙 高典 《电气工程学报》 CSCD 北大核心 2024年第2期186-199,共14页
准确预测综合能源系统(Integrated energy system,IES)中的电、冷、热多元负荷是提高各类能源综合效率、获得更大经济效益的关键。因此,提出一种基于时序特征灰度图与多任务学习的综合能源负荷短期预测方法。首先将初始特征集通过最大... 准确预测综合能源系统(Integrated energy system,IES)中的电、冷、热多元负荷是提高各类能源综合效率、获得更大经济效益的关键。因此,提出一种基于时序特征灰度图与多任务学习的综合能源负荷短期预测方法。首先将初始特征集通过最大互信息系数(Maximum information coefficient,MIC)改进的快速相关滤波算法(Fast correlation-based filter,FCBF)对IES时序特征数据集进行相关性分析和冗余性分析;然后将特征选择结果利用因数重构法与MIC-gamma图像增强的方法重构为时序特征灰度图,能够直观有效地反映实际数据的特征相关性;其次采用基于多任务学习框架的(Convolutional block attention module-convolutional neural network-deep bidirectional gated recurrent unit,CBAM-CNN-DBiGRU)网络进行训练,嵌入的卷积注意力机制模块(Convolutional block attention module,CBAM)与(Deep bidirectional gated recurrent unit,DBiGRU)结构能有效加强共享层的关键信息提取和时序信息处理能力;最后以美国亚利桑那州立大学的IES数据为例对提出的方法进行测试。选取典型工作日和典型休息日并对比多种深度网络模型,测试结果表明,该模型在典型工作日的加权平均绝对百分比误差与加权均方根误差分别最大降低了0.8813%与229.2593 kW,在典型休息日则分别最大降低了0.9942%与360.8007 kW,能够有效提升IES多元负荷预测精度。 展开更多
关键词 多元负荷预测 最大互信息系数 快速相关滤波算法 特征冗余性 MIC-gamma图像增强 卷积注意力机制模块 深度双向门控循环单元
在线阅读 下载PDF
基于改进PSPnet-MobileNetV2的煤岩界面快速精准识别 被引量:4
20
作者 王海舰 刘丽丽 +1 位作者 赵雪梅 张强 《振动.测试与诊断》 EI CSCD 北大核心 2024年第4期793-800,832,833,共10页
针对短时间主动热激励作用下煤岩介质表征差异不明显,不易快速、准确识别煤岩界面的难题,提出一种基于改进金字塔场景解析网络(pyramid scene parsing network,简称PSPnet)模型-MobileNetV2的煤岩界面快速精准识别方法。通过搭建煤岩主... 针对短时间主动热激励作用下煤岩介质表征差异不明显,不易快速、准确识别煤岩界面的难题,提出一种基于改进金字塔场景解析网络(pyramid scene parsing network,简称PSPnet)模型-MobileNetV2的煤岩界面快速精准识别方法。通过搭建煤岩主动红外试验平台,采集并获取短时主动热激励作用下的煤岩界面红外热图像,构建了煤岩红外图像数据集;对传统PSPnet模型进行改进,采用轻量级网络模型MobileNetV2作为主干网络提取特征,大幅降低了网络模型所占内存和训练时间,同时将注意力机制模块(convolutional block attention module,简称CBAM)与金字塔场景解析(pyramid scene parsing,简称PSP)模块的上采样特征层和PSPnet网络模型的浅层特征层进行融合,有效提升模型对特征的细化能力。试验结果表明:基于改进的PSPnet-MobileNetV2网络模型所占内存仅为9.12 MB,较原始PSPnet模型减少了94.88%;煤和岩的交并比为96.52%和96.87%,分别提升了8.29%和7.7%;像素准确度分别为97.25%和99.15%,较原始网络模型分别提升了7.32%和1.64%;测试时间降低了53.70%。该方法为煤岩界面的快速和预先精准识别提供了一种有效技术手段。 展开更多
关键词 煤岩识别 主动红外激励 金字塔场景解析网络(PSPnet) MobileNetV2 注意力机制模块
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部