用于中高压直流电网互联和隔离的模块化多电平直流变压器(modular multilevel DC transformer,MMDCT)在传输功率变化的过程中会出现电流欠阻尼振荡的问题,从而降低了装置的稳定性,因此文中对振荡抑制展开了研究。首先,通过差模和共模电...用于中高压直流电网互联和隔离的模块化多电平直流变压器(modular multilevel DC transformer,MMDCT)在传输功率变化的过程中会出现电流欠阻尼振荡的问题,从而降低了装置的稳定性,因此文中对振荡抑制展开了研究。首先,通过差模和共模电路中的振荡现象分析,并基于状态空间平均法建立数学模型,从而揭示了MMDCT中的电流振荡机理;进一步提出了一种基于共模和差模分离的电流振荡抑制方法,利用变副边交流侧电压占空比的方式实现漏感电流振荡的抑制,同时采用变桥臂电压占空比的方式进行环流电流振荡的抑制,并给出了相应控制器参数设计依据。最后,通过仿真和实验验证了所提控制方法的有效性,结果表明在基于共模和差模分离的振荡抑制方法下,MMDCT可以在功率变化过程中快速实现电流稳定,有利于提升装置稳定性。展开更多
模块化多电平直流变压器(modular multilevel DC transformer, MMDCT)原边侧串联的子模块电容、桥臂电感及寄生电阻之间存在欠阻尼特性,实际运行中易引发频繁且持续的欠阻尼振荡,给系统的安全可靠运行带来挑战。为改善系统的欠阻尼特性...模块化多电平直流变压器(modular multilevel DC transformer, MMDCT)原边侧串联的子模块电容、桥臂电感及寄生电阻之间存在欠阻尼特性,实际运行中易引发频繁且持续的欠阻尼振荡,给系统的安全可靠运行带来挑战。为改善系统的欠阻尼特性,首先,建立了模块化多电平直流变压器原边侧的环流等效模型,揭示系统欠阻尼振荡产生的机理。其次,引入小量修正角实现每隔半个开关周期对环流抑制电压的修正,主动控制环流变化趋势,有效增强系统内部阻尼,从而抑制了暂态过程中的欠阻尼振荡。然后,采用功率前馈-电容电压环流双闭环控制策略,通过合理的参数设计,确保系统在多场景多工况下具备良好的动态响应性能。最后,通过仿真和实验验证了所提控制策略对MMDCT欠阻尼特性的改善作用。展开更多
DC-DC变换器是实现不同电压等级和拓扑结构的高压直流HVDC(high voltage direct current)电网互联的关键设备,随着新型电力系统的逐步建设,DC-DC变换器成为新型电力系统领域的研究热点之一。DC-DC变换器具有许多优点:可增加电网的可控性...DC-DC变换器是实现不同电压等级和拓扑结构的高压直流HVDC(high voltage direct current)电网互联的关键设备,随着新型电力系统的逐步建设,DC-DC变换器成为新型电力系统领域的研究热点之一。DC-DC变换器具有许多优点:可增加电网的可控性,可增强电网潮流控制、电压调节和故障阻断的能力。其中,直流模块化多电平变换器DC-MMC(DC modular multilevel converter)是用于互连具有相同线路拓扑HVDC系统的一种有效非隔离方法,然而,实际中直流系统往往电压等级和拓扑结构差别较大。基于此,提出了一种新型柔性DC-MMC的控制策略,该控制方法可实现不同线路拓扑HVDC的互连,如双极子与对称单极子互连。首先,详细阐述了高压直流输电系统中不同线路拓扑的特性;然后,针对新型DC-MMC建立了1种含变量变换的数学模型,并提出了基于平均桥臂模型和简化直流电网的控制方法;最后,在MATLAB/Simulink中进行仿真验证,结果验证了所提方法可保障DC-MMC在正常运行和降级运行下均能正常工作。展开更多
模块化多电平换流器的固态变压器(modular multilevel converter based solid state transformer,MMC-SST)由于具备多电压等级、多电压形态的端口,在交直流混合配电网中得到广泛关注。传统的输入串联输出并联(inputseriesoutput paralle...模块化多电平换流器的固态变压器(modular multilevel converter based solid state transformer,MMC-SST)由于具备多电压等级、多电压形态的端口,在交直流混合配电网中得到广泛关注。传统的输入串联输出并联(inputseriesoutput parallel,ISOP)型MMC-SST具有较高的功率密度,但是在中压直流(medium voltage DC,MVDC)端口短路故障情况下无法持续向低压侧供电;双向有源全桥变换器(dualactive bridge,DAB)型MMC-SST则存在功率密度低、成本高等问题,并且传统的半桥结构的DAB型MMC-SST在MVDC端口短路故障情况下同样无法持续向低压侧供电。文章提出了一种子模块桥臂复用(arm integrated submodule,AISM)型MMC-SST拓扑,在不改变MMC-SST端口电气特性的情况下,在有效减少开关器件数量的同时,还使得SST具备中压直流端口短路故障下的不间断运行能力,进而提升SST的功率密度和供电可靠性。针对文中提出的AISM型MMCSST拓扑,该文还提出了一种针对输入级MMC的混频调制方法,基于共模、差模解耦原理,实现输入级MMC桥臂电压的高频分量和低频分量的解耦。通过理论分析与仿真模拟,验证了所提拓扑及控制方法的可行性。展开更多
设计了一种基于模块化多电平型固态变压器(modular multilevel converter-solid state transformer,MMC-SST)的新型直流微网架构,可最大限度地适应新能源的接入,提高系统的电能质量,真正实现能量的双向按需传输和动态平衡使用。首先,详...设计了一种基于模块化多电平型固态变压器(modular multilevel converter-solid state transformer,MMC-SST)的新型直流微网架构,可最大限度地适应新能源的接入,提高系统的电能质量,真正实现能量的双向按需传输和动态平衡使用。首先,详细分析了基于MMC-SST的新型直流微网的系统结构,并给出了MMC-SST主电路拓扑;然后,对MMC-SST各级的控制策略和直流微网子系统能量管理算法进行了优化设计,使MMC-SST能够按照给定的功率因数运行,并具有比传统控制方式更快的瞬态响应速度和更强的鲁棒性,实现了直流微网子系统的灵活、经济、可靠运行;最后,通过搭建基于MMC-SST的新型直流微网子系统的简化计算机仿真平台,进行综合仿真验证了提出的架构和控制策略的可行性和有效性。展开更多
文摘用于中高压直流电网互联和隔离的模块化多电平直流变压器(modular multilevel DC transformer,MMDCT)在传输功率变化的过程中会出现电流欠阻尼振荡的问题,从而降低了装置的稳定性,因此文中对振荡抑制展开了研究。首先,通过差模和共模电路中的振荡现象分析,并基于状态空间平均法建立数学模型,从而揭示了MMDCT中的电流振荡机理;进一步提出了一种基于共模和差模分离的电流振荡抑制方法,利用变副边交流侧电压占空比的方式实现漏感电流振荡的抑制,同时采用变桥臂电压占空比的方式进行环流电流振荡的抑制,并给出了相应控制器参数设计依据。最后,通过仿真和实验验证了所提控制方法的有效性,结果表明在基于共模和差模分离的振荡抑制方法下,MMDCT可以在功率变化过程中快速实现电流稳定,有利于提升装置稳定性。
文摘模块化多电平直流变压器(modular multilevel DC transformer, MMDCT)原边侧串联的子模块电容、桥臂电感及寄生电阻之间存在欠阻尼特性,实际运行中易引发频繁且持续的欠阻尼振荡,给系统的安全可靠运行带来挑战。为改善系统的欠阻尼特性,首先,建立了模块化多电平直流变压器原边侧的环流等效模型,揭示系统欠阻尼振荡产生的机理。其次,引入小量修正角实现每隔半个开关周期对环流抑制电压的修正,主动控制环流变化趋势,有效增强系统内部阻尼,从而抑制了暂态过程中的欠阻尼振荡。然后,采用功率前馈-电容电压环流双闭环控制策略,通过合理的参数设计,确保系统在多场景多工况下具备良好的动态响应性能。最后,通过仿真和实验验证了所提控制策略对MMDCT欠阻尼特性的改善作用。
文摘DC-DC变换器是实现不同电压等级和拓扑结构的高压直流HVDC(high voltage direct current)电网互联的关键设备,随着新型电力系统的逐步建设,DC-DC变换器成为新型电力系统领域的研究热点之一。DC-DC变换器具有许多优点:可增加电网的可控性,可增强电网潮流控制、电压调节和故障阻断的能力。其中,直流模块化多电平变换器DC-MMC(DC modular multilevel converter)是用于互连具有相同线路拓扑HVDC系统的一种有效非隔离方法,然而,实际中直流系统往往电压等级和拓扑结构差别较大。基于此,提出了一种新型柔性DC-MMC的控制策略,该控制方法可实现不同线路拓扑HVDC的互连,如双极子与对称单极子互连。首先,详细阐述了高压直流输电系统中不同线路拓扑的特性;然后,针对新型DC-MMC建立了1种含变量变换的数学模型,并提出了基于平均桥臂模型和简化直流电网的控制方法;最后,在MATLAB/Simulink中进行仿真验证,结果验证了所提方法可保障DC-MMC在正常运行和降级运行下均能正常工作。
文摘模块化多电平换流器的固态变压器(modular multilevel converter based solid state transformer,MMC-SST)由于具备多电压等级、多电压形态的端口,在交直流混合配电网中得到广泛关注。传统的输入串联输出并联(inputseriesoutput parallel,ISOP)型MMC-SST具有较高的功率密度,但是在中压直流(medium voltage DC,MVDC)端口短路故障情况下无法持续向低压侧供电;双向有源全桥变换器(dualactive bridge,DAB)型MMC-SST则存在功率密度低、成本高等问题,并且传统的半桥结构的DAB型MMC-SST在MVDC端口短路故障情况下同样无法持续向低压侧供电。文章提出了一种子模块桥臂复用(arm integrated submodule,AISM)型MMC-SST拓扑,在不改变MMC-SST端口电气特性的情况下,在有效减少开关器件数量的同时,还使得SST具备中压直流端口短路故障下的不间断运行能力,进而提升SST的功率密度和供电可靠性。针对文中提出的AISM型MMCSST拓扑,该文还提出了一种针对输入级MMC的混频调制方法,基于共模、差模解耦原理,实现输入级MMC桥臂电压的高频分量和低频分量的解耦。通过理论分析与仿真模拟,验证了所提拓扑及控制方法的可行性。
文摘设计了一种基于模块化多电平型固态变压器(modular multilevel converter-solid state transformer,MMC-SST)的新型直流微网架构,可最大限度地适应新能源的接入,提高系统的电能质量,真正实现能量的双向按需传输和动态平衡使用。首先,详细分析了基于MMC-SST的新型直流微网的系统结构,并给出了MMC-SST主电路拓扑;然后,对MMC-SST各级的控制策略和直流微网子系统能量管理算法进行了优化设计,使MMC-SST能够按照给定的功率因数运行,并具有比传统控制方式更快的瞬态响应速度和更强的鲁棒性,实现了直流微网子系统的灵活、经济、可靠运行;最后,通过搭建基于MMC-SST的新型直流微网子系统的简化计算机仿真平台,进行综合仿真验证了提出的架构和控制策略的可行性和有效性。