DC-DC变换器是实现不同电压等级和拓扑结构的高压直流HVDC(high voltage direct current)电网互联的关键设备,随着新型电力系统的逐步建设,DC-DC变换器成为新型电力系统领域的研究热点之一。DC-DC变换器具有许多优点:可增加电网的可控性...DC-DC变换器是实现不同电压等级和拓扑结构的高压直流HVDC(high voltage direct current)电网互联的关键设备,随着新型电力系统的逐步建设,DC-DC变换器成为新型电力系统领域的研究热点之一。DC-DC变换器具有许多优点:可增加电网的可控性,可增强电网潮流控制、电压调节和故障阻断的能力。其中,直流模块化多电平变换器DC-MMC(DC modular multilevel converter)是用于互连具有相同线路拓扑HVDC系统的一种有效非隔离方法,然而,实际中直流系统往往电压等级和拓扑结构差别较大。基于此,提出了一种新型柔性DC-MMC的控制策略,该控制方法可实现不同线路拓扑HVDC的互连,如双极子与对称单极子互连。首先,详细阐述了高压直流输电系统中不同线路拓扑的特性;然后,针对新型DC-MMC建立了1种含变量变换的数学模型,并提出了基于平均桥臂模型和简化直流电网的控制方法;最后,在MATLAB/Simulink中进行仿真验证,结果验证了所提方法可保障DC-MMC在正常运行和降级运行下均能正常工作。展开更多
在海上风电直流汇集-直流送出系统中,基于单相模块化多电平换流器的面对面型(modular multilevel converter based front-to-front,MMC-FTF)高压大功率DC/DC变换器是连接中压汇聚线与高压直流输电(high voltage direct current,HVDC)线...在海上风电直流汇集-直流送出系统中,基于单相模块化多电平换流器的面对面型(modular multilevel converter based front-to-front,MMC-FTF)高压大功率DC/DC变换器是连接中压汇聚线与高压直流输电(high voltage direct current,HVDC)线路的关键接口设备。然而,针对MMC-FTF变换器的阻抗建模鲜有报道,且含MMC-FTF变换器的HVDC系统的小信号稳定性问题尚不明确。针对此问题,该文首先根据频率耦合效应提出共差模提取矩阵,实现了多谐波线性化方法下单相及三相MMC交直流侧阻抗模型的统一,并建立了MMC-FTF变换器的直流侧阻抗模型。其次,利用阻抗稳定性判据揭示了MMC-FTF变换器与岸上三相MMC换流站互联时存在的振荡风险。接着,根据相角灵敏度指标定量评估了不同控制器参数对系统稳定性的影响,并提出用于提升系统稳定性的调参准则。最后,基于MATLAB/Simulink仿真和硬件在环实验验证了结果的正确性。展开更多
由于柔性直流系统易于多点馈入、多端成网从而解决控制灵活性及供电可靠性等问题,网状柔性直流输电系统正获得越来越多的关注与研究。解决网状直流系统中由于线路数大于等于可控节点个数时潮流不可控的问题,需增加直流潮流控制器以实现...由于柔性直流系统易于多点馈入、多端成网从而解决控制灵活性及供电可靠性等问题,网状柔性直流输电系统正获得越来越多的关注与研究。解决网状直流系统中由于线路数大于等于可控节点个数时潮流不可控的问题,需增加直流潮流控制器以实现线路优化运行,达到输电走廊堵塞缓解及线损减少的目的。为满足高压柔直输电网的潮流控制需求,针对模块化多电平换流器(modular multilevel converter,MMC),文中提出一种新型内嵌于MMC换流器的直流潮流控制器(embedded DC power flow controller,e-DCPFC),采用模块化多电平结构,具有宽范围、模块化等优势。首先基于MMC型e-DCPFC的拓扑结构,分析工作原理并建立其数学模型,提出系统控制策略。最后,通过仿真与小功率样机,验证e-DCPFC潮流控制的可行性及有效性。展开更多
文摘DC-DC变换器是实现不同电压等级和拓扑结构的高压直流HVDC(high voltage direct current)电网互联的关键设备,随着新型电力系统的逐步建设,DC-DC变换器成为新型电力系统领域的研究热点之一。DC-DC变换器具有许多优点:可增加电网的可控性,可增强电网潮流控制、电压调节和故障阻断的能力。其中,直流模块化多电平变换器DC-MMC(DC modular multilevel converter)是用于互连具有相同线路拓扑HVDC系统的一种有效非隔离方法,然而,实际中直流系统往往电压等级和拓扑结构差别较大。基于此,提出了一种新型柔性DC-MMC的控制策略,该控制方法可实现不同线路拓扑HVDC的互连,如双极子与对称单极子互连。首先,详细阐述了高压直流输电系统中不同线路拓扑的特性;然后,针对新型DC-MMC建立了1种含变量变换的数学模型,并提出了基于平均桥臂模型和简化直流电网的控制方法;最后,在MATLAB/Simulink中进行仿真验证,结果验证了所提方法可保障DC-MMC在正常运行和降级运行下均能正常工作。
文摘在海上风电直流汇集-直流送出系统中,基于单相模块化多电平换流器的面对面型(modular multilevel converter based front-to-front,MMC-FTF)高压大功率DC/DC变换器是连接中压汇聚线与高压直流输电(high voltage direct current,HVDC)线路的关键接口设备。然而,针对MMC-FTF变换器的阻抗建模鲜有报道,且含MMC-FTF变换器的HVDC系统的小信号稳定性问题尚不明确。针对此问题,该文首先根据频率耦合效应提出共差模提取矩阵,实现了多谐波线性化方法下单相及三相MMC交直流侧阻抗模型的统一,并建立了MMC-FTF变换器的直流侧阻抗模型。其次,利用阻抗稳定性判据揭示了MMC-FTF变换器与岸上三相MMC换流站互联时存在的振荡风险。接着,根据相角灵敏度指标定量评估了不同控制器参数对系统稳定性的影响,并提出用于提升系统稳定性的调参准则。最后,基于MATLAB/Simulink仿真和硬件在环实验验证了结果的正确性。
文摘由于柔性直流系统易于多点馈入、多端成网从而解决控制灵活性及供电可靠性等问题,网状柔性直流输电系统正获得越来越多的关注与研究。解决网状直流系统中由于线路数大于等于可控节点个数时潮流不可控的问题,需增加直流潮流控制器以实现线路优化运行,达到输电走廊堵塞缓解及线损减少的目的。为满足高压柔直输电网的潮流控制需求,针对模块化多电平换流器(modular multilevel converter,MMC),文中提出一种新型内嵌于MMC换流器的直流潮流控制器(embedded DC power flow controller,e-DCPFC),采用模块化多电平结构,具有宽范围、模块化等优势。首先基于MMC型e-DCPFC的拓扑结构,分析工作原理并建立其数学模型,提出系统控制策略。最后,通过仿真与小功率样机,验证e-DCPFC潮流控制的可行性及有效性。