A new experimental apparatus was set up to investigate the actual fi-iction characteristics on the basis of speed control of the serve system.A modified friction model was proposed due to real time varying deformation...A new experimental apparatus was set up to investigate the actual fi-iction characteristics on the basis of speed control of the serve system.A modified friction model was proposed due to real time varying deformation resistance.The approach to identify the parameters of comprehensive friction behaviors based on the modified model was proposed and applied to the forging press.The impacts on parameters which the external load had were also investigated.The results show that friction force decreases with velocity in the low velocity regime whereas the friction force increases with the velocity in the high velocity regime under no external load.It is also shown that the Coulomb friction force,the maximum static friction force and the vicious friction coefficient change linearly with the external load taking the velocity at which the magnitude of the steady state friction force becomes minimum as the critical velocity.展开更多
This work deals with analysis of dynamic behaviour of hydraulic excavator on the basis of developed dynamic-mathematical model.The mathematical model with maximum five degrees of freedom is extended by new generalized...This work deals with analysis of dynamic behaviour of hydraulic excavator on the basis of developed dynamic-mathematical model.The mathematical model with maximum five degrees of freedom is extended by new generalized coordinate which represents rotation around transversal main central axis of inertia of undercarriage.The excavator is described by a system of six nonlinear,nonhomogenous differential equations of the second kind.Numerical analysis of the differential equations has been done for BTH-600 hydraulic excavator with moving mechanism with pneumatic wheels.展开更多
The hot compression test of 6063 Al alloy was performed on a Gleeble-1500 thermo-simulation machine, and the forming of 6063 rod cxtrudate in low-temperature high-speed extrusion was simulated with extrusion ratio of ...The hot compression test of 6063 Al alloy was performed on a Gleeble-1500 thermo-simulation machine, and the forming of 6063 rod cxtrudate in low-temperature high-speed extrusion was simulated with extrusion ratio of 25 on the platform of DEFORM 2D successfully. From the compression experimental results, the flow stress model of this Al alloy is obtained which could be the constitutive equation in the simulation of low-temperature high-speed extrusion process. From the numerical simulation results, there is a higher strain concentration at the entrance of the die and the exit temperature reaches up to 522 ℃ in low-temperature high-speed extrusion, which approaches to the quenching temperature of the 6063 Al alloy. The results show that the low-temperature high-speed extrusion method as a promsing one can reduce energy consumption effectively.展开更多
In order to measure the backhoe vibratory excavating resistance of a hydraulic excavator fast and precisely,the influences of vibratory excavating depth,angle,vibratory frequency,amplitude,bucket inserting velocity an...In order to measure the backhoe vibratory excavating resistance of a hydraulic excavator fast and precisely,the influences of vibratory excavating depth,angle,vibratory frequency,amplitude,bucket inserting velocity and soil type on the vibratory excavating resistance were analyzed.Simulation analysis was carded out to establish the bucket inserting velocity,amplitude and vibratory frequency considered as secondary variables and excavating resistance as primary variable.A fttzzy membership function was introduced to improve the anti-noise capacity of support vector machine,which is a soft-sensing model on the hydraulic excavator's backhoe vibratory excavating resistance based on fuzzy support vector machine.The simulation result reveals that its maximum relative training and testing error are nearly 0.68% and-0.47%,respectively.It is concluded that the model has quite high modeling precision and generalization capacity,and it can measure the vibratory excavating resistance accurately,reliably and fast in an indirect way.展开更多
For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmissi...For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.展开更多
The cracking patterns of a thin sheet with a pre-existing crack subjected to dynamic loading are numerically simulated to investigate the mechanism of crack branching by using the FEM method.Six numerical models were ...The cracking patterns of a thin sheet with a pre-existing crack subjected to dynamic loading are numerically simulated to investigate the mechanism of crack branching by using the FEM method.Six numerical models were set up to study the effects of load,tensile strength and heterogeneity on crack branching.The crack propagation is affected by the applied loads,tensile strength and heterogeneity.Before crack branching,the crack propagates by some distance along the direction of the pre-existing crack.For the materials with low heterogeneity,the higher the applied stress level is and the lower the tensile strength of the material is,the shorter the propagation distance is.Moreover,the branching angle becomes larger and the number of branching cracks increases.In the case of the materials with high heterogeneity,a lot of disordered voids and microcracks randomly occur along the main crack,so the former law is not obvious.The numerical results not only are in good agreement with the experimental observations in laboratory,but also can be extended to heterogeneity media.The work can provide a good approach to model the cracking and fracturing of heterogeneous quasi-brittle materials,such as rock,under dynamic loading.展开更多
The dynamic recrystallization(DRX) process of hot compressed aluminium alloy 7050 was predicted using cellular automaton(CA) combined with topology deformation. The hot deformatation characteristics of aluminium alloy...The dynamic recrystallization(DRX) process of hot compressed aluminium alloy 7050 was predicted using cellular automaton(CA) combined with topology deformation. The hot deformatation characteristics of aluminium alloy 7050 were investigated by hot uniaxial compression tests in order to obtain the material parameters used in the CA model. The influences of process parameters(strain, strain rate and temperature) on the fraction of DRX and the average recrystallization grain(R-grain) size were investigated and discussed. It is found that larger stain, higher temperature and lower strain rate(less than 0.1 s^(–1)) are beneficial to the increasing fraction of DRX. And the deformation temperature affects the mean R-grain size much more greatly than other parameters. It is also noted that there is a critical strain for the occurrence of DRX which is related to strain rate and temperature. In addition, it is shown that the CA model with topology deformation is able to simulate the microstructural evolution and the flow behavior of aluminium alloy 7050 material under various deformation conditions.展开更多
A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant no...A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant nonlinearity exist in the volume control electro-hydraulic servo system,the ILC(iterative learning control) method is applied to tracking the displacement curve of the hydraulic press slider.In order to improve the convergence speed and precision of ILC,a fuzzy ILC algorithm that utilizes the fuzzy strategy to adaptively adjust the iterative learning gains is put forward.The simulation and experimental researches are carried out to investigate the convergence speed and precision of the fuzzy ILC for hydraulic press slider position tracking.The results show that the fuzzy ILC can raise the iterative learning speed enormously,and realize the tracking control of slider displacement curve with rapid response speed and high control precision.In experiment,the maximum tracking error 0.02 V is achieved through 12 iterations only.展开更多
In order to improve the control performance of strip rolling mill, theoretical model of the hydraulic gap control(HGC) system was established. HGC system offline identification scheme was designed for a tandem cold st...In order to improve the control performance of strip rolling mill, theoretical model of the hydraulic gap control(HGC) system was established. HGC system offline identification scheme was designed for a tandem cold strip mill, the system model parameters were identified by ARX model, and the identified model was verified. Taking the offline identified parameters as the initial values, online identification using recursive least square was carried out with model parameters changing. For the purpose of improving system robustness and decreasing the sensitivity due to model errors, the HGC system based on generalized predictive control(GPC) was designed, and simulation experiments for traditional controller and GPC controller were conducted. The results show that both controllers acquire good control effect with model matching. When the model mismatches, for the traditional controller, the overshot will increase to 76.7% and the rising time will increase to 165.7 ms, which cannot be accepted by HGC system; for the GPC controller, the overshot is less than 8.5%, and the rising time is less than 26 ms in any case.展开更多
基金Project(51005251)supported by the National Natural Science Foundation of ChinaProject(2011CB706802)supported by the National Basic Research Development Program of China(973 Program)
文摘A new experimental apparatus was set up to investigate the actual fi-iction characteristics on the basis of speed control of the serve system.A modified friction model was proposed due to real time varying deformation resistance.The approach to identify the parameters of comprehensive friction behaviors based on the modified model was proposed and applied to the forging press.The impacts on parameters which the external load had were also investigated.The results show that friction force decreases with velocity in the low velocity regime whereas the friction force increases with the velocity in the high velocity regime under no external load.It is also shown that the Coulomb friction force,the maximum static friction force and the vicious friction coefficient change linearly with the external load taking the velocity at which the magnitude of the steady state friction force becomes minimum as the critical velocity.
文摘This work deals with analysis of dynamic behaviour of hydraulic excavator on the basis of developed dynamic-mathematical model.The mathematical model with maximum five degrees of freedom is extended by new generalized coordinate which represents rotation around transversal main central axis of inertia of undercarriage.The excavator is described by a system of six nonlinear,nonhomogenous differential equations of the second kind.Numerical analysis of the differential equations has been done for BTH-600 hydraulic excavator with moving mechanism with pneumatic wheels.
基金Project(2008A09030004) supported by the Major Science and Technology Project of Guangdong Province,ChinaProject(30815009) supported by the Foundation of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body
文摘The hot compression test of 6063 Al alloy was performed on a Gleeble-1500 thermo-simulation machine, and the forming of 6063 rod cxtrudate in low-temperature high-speed extrusion was simulated with extrusion ratio of 25 on the platform of DEFORM 2D successfully. From the compression experimental results, the flow stress model of this Al alloy is obtained which could be the constitutive equation in the simulation of low-temperature high-speed extrusion process. From the numerical simulation results, there is a higher strain concentration at the entrance of the die and the exit temperature reaches up to 522 ℃ in low-temperature high-speed extrusion, which approaches to the quenching temperature of the 6063 Al alloy. The results show that the low-temperature high-speed extrusion method as a promsing one can reduce energy consumption effectively.
基金Project(2003AA430200)supported by the National High Technology Research and Development Program of China
文摘In order to measure the backhoe vibratory excavating resistance of a hydraulic excavator fast and precisely,the influences of vibratory excavating depth,angle,vibratory frequency,amplitude,bucket inserting velocity and soil type on the vibratory excavating resistance were analyzed.Simulation analysis was carded out to establish the bucket inserting velocity,amplitude and vibratory frequency considered as secondary variables and excavating resistance as primary variable.A fttzzy membership function was introduced to improve the anti-noise capacity of support vector machine,which is a soft-sensing model on the hydraulic excavator's backhoe vibratory excavating resistance based on fuzzy support vector machine.The simulation result reveals that its maximum relative training and testing error are nearly 0.68% and-0.47%,respectively.It is concluded that the model has quite high modeling precision and generalization capacity,and it can measure the vibratory excavating resistance accurately,reliably and fast in an indirect way.
基金Project(51405010)supported by the National Natural Science Foundation of ChinaProject(2011BAG09B00)supported by the National Science and Technology Support Program of China
文摘For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.
基金Project(50820125405)supported by the National Natural Science Foundation of ChinaProject(51121005)supported by the National Natural Science Foundation of China
文摘The cracking patterns of a thin sheet with a pre-existing crack subjected to dynamic loading are numerically simulated to investigate the mechanism of crack branching by using the FEM method.Six numerical models were set up to study the effects of load,tensile strength and heterogeneity on crack branching.The crack propagation is affected by the applied loads,tensile strength and heterogeneity.Before crack branching,the crack propagates by some distance along the direction of the pre-existing crack.For the materials with low heterogeneity,the higher the applied stress level is and the lower the tensile strength of the material is,the shorter the propagation distance is.Moreover,the branching angle becomes larger and the number of branching cracks increases.In the case of the materials with high heterogeneity,a lot of disordered voids and microcracks randomly occur along the main crack,so the former law is not obvious.The numerical results not only are in good agreement with the experimental observations in laboratory,but also can be extended to heterogeneity media.The work can provide a good approach to model the cracking and fracturing of heterogeneous quasi-brittle materials,such as rock,under dynamic loading.
基金Project(2012ZX04010-8)supported by National Key Technology R&D Program of China
文摘The dynamic recrystallization(DRX) process of hot compressed aluminium alloy 7050 was predicted using cellular automaton(CA) combined with topology deformation. The hot deformatation characteristics of aluminium alloy 7050 were investigated by hot uniaxial compression tests in order to obtain the material parameters used in the CA model. The influences of process parameters(strain, strain rate and temperature) on the fraction of DRX and the average recrystallization grain(R-grain) size were investigated and discussed. It is found that larger stain, higher temperature and lower strain rate(less than 0.1 s^(–1)) are beneficial to the increasing fraction of DRX. And the deformation temperature affects the mean R-grain size much more greatly than other parameters. It is also noted that there is a critical strain for the occurrence of DRX which is related to strain rate and temperature. In addition, it is shown that the CA model with topology deformation is able to simulate the microstructural evolution and the flow behavior of aluminium alloy 7050 material under various deformation conditions.
基金Project(2007AA04Z144) supported by the National High-Tech Research and Development Program of ChinaProject(2007421119) supported by the China Postdoctoral Science Foundation
文摘A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant nonlinearity exist in the volume control electro-hydraulic servo system,the ILC(iterative learning control) method is applied to tracking the displacement curve of the hydraulic press slider.In order to improve the convergence speed and precision of ILC,a fuzzy ILC algorithm that utilizes the fuzzy strategy to adaptively adjust the iterative learning gains is put forward.The simulation and experimental researches are carried out to investigate the convergence speed and precision of the fuzzy ILC for hydraulic press slider position tracking.The results show that the fuzzy ILC can raise the iterative learning speed enormously,and realize the tracking control of slider displacement curve with rapid response speed and high control precision.In experiment,the maximum tracking error 0.02 V is achieved through 12 iterations only.
基金Project(51074051)supported by the National Natural Science Foundation of ChinaProject(20131033)supported by the Ph D Start-up Fund of Natural Science Foundation of Liaoning Province,ChinaProject(N140704001)supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to improve the control performance of strip rolling mill, theoretical model of the hydraulic gap control(HGC) system was established. HGC system offline identification scheme was designed for a tandem cold strip mill, the system model parameters were identified by ARX model, and the identified model was verified. Taking the offline identified parameters as the initial values, online identification using recursive least square was carried out with model parameters changing. For the purpose of improving system robustness and decreasing the sensitivity due to model errors, the HGC system based on generalized predictive control(GPC) was designed, and simulation experiments for traditional controller and GPC controller were conducted. The results show that both controllers acquire good control effect with model matching. When the model mismatches, for the traditional controller, the overshot will increase to 76.7% and the rising time will increase to 165.7 ms, which cannot be accepted by HGC system; for the GPC controller, the overshot is less than 8.5%, and the rising time is less than 26 ms in any case.