Luffing mechanism is a key component of the construction machinery.This paper proposes a two degree of freedom(2-DOF)luffing mechanism,which has one more pair of driving cylinders than the single DOF luffing mechanism...Luffing mechanism is a key component of the construction machinery.This paper proposes a two degree of freedom(2-DOF)luffing mechanism,which has one more pair of driving cylinders than the single DOF luffing mechanism,to improve the performance of the machinery.To establish the dynamic model of the 2-DOF luffing mechanism,firstly,we develop a hierarchical method to deduce the Jacobian matrix and Hessian matrix for obtaining the kinematics equations.Subsequently,we divide the luffing mechanism into six bodies considering actuators,and deduce the kinetic equations of each body by the Newton-Euler method.Based on the dynamic model,we simulate the luffing process.Finally,a prototype is built on a pile driver to validate the model.Simulations and experiments show that the dynamic model can reflect the dynamic properties of the proposed luffing mechanism.And the control strategy that the front cylinders retract first shows better mechanical behavior than the other two control strategies.This research provides a reference for the design and application of 2-DOF luffing mechanism on construction machinery.The modeling approach can also be applied to similar mechanism with serial closed kinematic chains,which allows to calculate the dynamic parameters easily and exactly.展开更多
In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step ...In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step for the dynamic response simulation of rock mass in a high in-situ stress field.In this paper,stress initialization methods,including their principles and operating procedures for reproducing steady in-situ stress state in LS-DYNA,are first introduced.Then the most popular four methods,i.e.,explicit dynamic relaxation(DR)method,implicit-explicit sequence method,Dynain file method and quasi-static method,are exemplified through a case analysis by using the RHT and plastic hardening rock material models to simulate rock blasting under in-situ stress condition.Based on the simulations,it is concluded that the stress initialization results obtained by implicit-explicit sequence method and dynain file method are closely related to the rock material model,and the explicit DR method has an obvious advantage in solution time when compared to other methods.Besides that,it is recommended to adopt two separate analyses for the whole numerical simulation of rock mass under the combined action of in-situ stress and dynamic disturbance.展开更多
基金Project(2015B020238014)supported by the Science and Technology Program of Guangdong Province,China。
文摘Luffing mechanism is a key component of the construction machinery.This paper proposes a two degree of freedom(2-DOF)luffing mechanism,which has one more pair of driving cylinders than the single DOF luffing mechanism,to improve the performance of the machinery.To establish the dynamic model of the 2-DOF luffing mechanism,firstly,we develop a hierarchical method to deduce the Jacobian matrix and Hessian matrix for obtaining the kinematics equations.Subsequently,we divide the luffing mechanism into six bodies considering actuators,and deduce the kinetic equations of each body by the Newton-Euler method.Based on the dynamic model,we simulate the luffing process.Finally,a prototype is built on a pile driver to validate the model.Simulations and experiments show that the dynamic model can reflect the dynamic properties of the proposed luffing mechanism.And the control strategy that the front cylinders retract first shows better mechanical behavior than the other two control strategies.This research provides a reference for the design and application of 2-DOF luffing mechanism on construction machinery.The modeling approach can also be applied to similar mechanism with serial closed kinematic chains,which allows to calculate the dynamic parameters easily and exactly.
基金Project(41630642)supported by the Key Project of National Natural Science Foundation of ChinaProject(51974360)supported by the National Natural Science Foundation of ChinaProject(2018JJ3656)supported by the Natural Science Foundation of Hunan Province,China。
文摘In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step for the dynamic response simulation of rock mass in a high in-situ stress field.In this paper,stress initialization methods,including their principles and operating procedures for reproducing steady in-situ stress state in LS-DYNA,are first introduced.Then the most popular four methods,i.e.,explicit dynamic relaxation(DR)method,implicit-explicit sequence method,Dynain file method and quasi-static method,are exemplified through a case analysis by using the RHT and plastic hardening rock material models to simulate rock blasting under in-situ stress condition.Based on the simulations,it is concluded that the stress initialization results obtained by implicit-explicit sequence method and dynain file method are closely related to the rock material model,and the explicit DR method has an obvious advantage in solution time when compared to other methods.Besides that,it is recommended to adopt two separate analyses for the whole numerical simulation of rock mass under the combined action of in-situ stress and dynamic disturbance.