期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于GWO-SVM的测井岩性识别模型研究——以鄂尔多斯盆地榆林南气田山西组为例
1
作者 董凤娟 李昆昆 +4 位作者 费世祥 王京舰 周超 任大忠 卢学飞 《地质与勘探》 北大核心 2025年第4期872-880,共9页
鄂尔多斯盆地榆林南气田山西组地层发育一套以砂岩和泥岩为主、夹少量煤层的沉积序列,是该区油气勘探开发的重要目标层位。为提高岩性识别效率与精度,本研究采用随机森林算法(Random Forest)开展测井参数敏感性分析,优选出自然伽马(GR)... 鄂尔多斯盆地榆林南气田山西组地层发育一套以砂岩和泥岩为主、夹少量煤层的沉积序列,是该区油气勘探开发的重要目标层位。为提高岩性识别效率与精度,本研究采用随机森林算法(Random Forest)开展测井参数敏感性分析,优选出自然伽马(GR)、补偿中子(CNL)、声波时差(AC)和密度(DEN)4个对岩性响应敏感的特征参数。研究共提取865组样本数据(每组样本有4维测井属性、1维岩性标签),其中70%作为训练样本,其余30%作为测试样本。通过对比BP神经网络、支持向量机(SVM)、粒子群优化支持向量机(PSO-SVM)和灰狼优化支持向量机(GWOSVM)等机器学习方法,建立了山西组3种主要岩性的智能识别模型,并结合岩性剖面进行验证分析。结果表明,灰狼算法优化的支持向量机模型(GWO-SVM)表现最优,其识别准确率达93.4%,召回率和F1值分别为93.0%和93.6%,各项评价指标均优于对比模型,展现出更高的识别精度、更好的综合性能与可靠性。 展开更多
关键词 岩性识别 测井响应 机器学习 GWO-SVM 山西组 榆林南气田 鄂尔多斯盆地
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部