期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于概率衰减窗口模型的不确定数据流频繁模式挖掘 被引量:15
1
作者 廖国琼 吴凌琴 万常选 《计算机研究与发展》 EI CSCD 北大核心 2012年第5期1105-1115,共11页
考虑到不确定数据流的不确定性,设计了一种新的概率频繁模式树PFP-tree和基于该树的概率频繁模式挖掘方法PFP-growth.PFP-growth使用事务性不确定数据流及概率衰减窗口模型,通过计算各概率数据项的期望支持度以发现概率频繁模式,其主要... 考虑到不确定数据流的不确定性,设计了一种新的概率频繁模式树PFP-tree和基于该树的概率频繁模式挖掘方法PFP-growth.PFP-growth使用事务性不确定数据流及概率衰减窗口模型,通过计算各概率数据项的期望支持度以发现概率频繁模式,其主要特点有:考虑到窗口内不同时间到达数据项的贡献度不同,采用概率衰减窗口模型计算期望支持度,以提高模式挖掘准确度;设置数据项索引表和事务索引表,以加快频繁模式树检索速度;通过剪枝删除不可能成为频繁模式的结点,以降低模式树的存储及检索开销;对每个结点都设立一个事务概率信息链表,以支持数据项在不同事务中具有不同概率的情形.实验结果表明,PFP-growth在保证挖掘模式准确度的前提下,在处理时间和内存空间等方面都具有较好的性能. 展开更多
关键词 不确定数据 数据流 概率频繁模式 频繁模式挖掘 数据挖掘
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部