针对交互式多模型(IMM)算法计算量大、模型切换时性能不佳的特点,提出了一种新的机动目标跟踪算法——方差模型概率(Variance Model Probability,VMP)算法。该算法结合多模型思想,利用当前量测残差在线推导模型方差,自适应调整模型概率...针对交互式多模型(IMM)算法计算量大、模型切换时性能不佳的特点,提出了一种新的机动目标跟踪算法——方差模型概率(Variance Model Probability,VMP)算法。该算法结合多模型思想,利用当前量测残差在线推导模型方差,自适应调整模型概率。模型概率大小与方差成反比,滤波输出为各模型加权和。为减小量测噪声引起的误差影响,在设定的时间窗内求方差平均值。仿真结果表明,VMP算法不仅性能优于交互式多模型算法,同时也减少了计算量,提高了费效比。展开更多
In order to improve the fine structure inversion ability of igneous rocks for the exploration of underlying strata, based on particle swarm optimization(PSO), we have developed a method for seismic wave impedance inve...In order to improve the fine structure inversion ability of igneous rocks for the exploration of underlying strata, based on particle swarm optimization(PSO), we have developed a method for seismic wave impedance inversion. Through numerical simulation, we tested the effects of different algorithm parameters and different model parameterization methods on PSO wave impedance inversion, and analyzed the characteristics of PSO method. Under the conclusions drawn from numerical simulation, we propose the scheme of combining a cross-moving strategy based on a divided block model and high-frequency filtering technology for PSO inversion. By analyzing the inversion results of a wedge model of a pitchout coal seam and a coal coking model with igneous rock intrusion, we discuss the vertical and horizontal resolution, stability and reliability of PSO inversion. Based on the actual seismic and logging data from an igneous area, by taking a seismic profile through wells as an example, we discuss the characteristics of three inversion methods, including model-based wave impedance inversion, multi-attribute seismic inversion based on probabilistic neural network(PNN) and wave impedance inversion based on PSO.And we draw the conclusion that the inversion based on PSO method has a better result for this igneous area.展开更多
文摘针对交互式多模型(IMM)算法计算量大、模型切换时性能不佳的特点,提出了一种新的机动目标跟踪算法——方差模型概率(Variance Model Probability,VMP)算法。该算法结合多模型思想,利用当前量测残差在线推导模型方差,自适应调整模型概率。模型概率大小与方差成反比,滤波输出为各模型加权和。为减小量测噪声引起的误差影响,在设定的时间窗内求方差平均值。仿真结果表明,VMP算法不仅性能优于交互式多模型算法,同时也减少了计算量,提高了费效比。
基金provided by the National Science and Technology Major Project(No.2011ZX05004-004)China National Petroleum Corporation Key Projects(No.2014E2105)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘In order to improve the fine structure inversion ability of igneous rocks for the exploration of underlying strata, based on particle swarm optimization(PSO), we have developed a method for seismic wave impedance inversion. Through numerical simulation, we tested the effects of different algorithm parameters and different model parameterization methods on PSO wave impedance inversion, and analyzed the characteristics of PSO method. Under the conclusions drawn from numerical simulation, we propose the scheme of combining a cross-moving strategy based on a divided block model and high-frequency filtering technology for PSO inversion. By analyzing the inversion results of a wedge model of a pitchout coal seam and a coal coking model with igneous rock intrusion, we discuss the vertical and horizontal resolution, stability and reliability of PSO inversion. Based on the actual seismic and logging data from an igneous area, by taking a seismic profile through wells as an example, we discuss the characteristics of three inversion methods, including model-based wave impedance inversion, multi-attribute seismic inversion based on probabilistic neural network(PNN) and wave impedance inversion based on PSO.And we draw the conclusion that the inversion based on PSO method has a better result for this igneous area.