期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于概率稀疏自注意力的航空发动机剩余寿命预测 被引量:1
1
作者 王欣 黄佳琪 许雅玺 《科学技术与工程》 北大核心 2024年第6期2424-2433,共10页
航空发动机剩余寿命预测对其健康管理具有重要意义,针对长序列、多维度的航空发动机监测参数,提出一种基于概率稀疏自注意力(ProbSparse Self-Attention)的Transformer模型以实现航空发动机剩余寿命的准确预测。用ProbSparse Self-Atten... 航空发动机剩余寿命预测对其健康管理具有重要意义,针对长序列、多维度的航空发动机监测参数,提出一种基于概率稀疏自注意力(ProbSparse Self-Attention)的Transformer模型以实现航空发动机剩余寿命的准确预测。用ProbSparse Self-Attention取代原始Transformer中的常规自注意力机制,使得模型更关注时间序列中重要的时间节点,大幅缩减时间维度,减小了时间和空间复杂度;通过注意力层整合后的信息,进一步通过前馈神经网络层和卷积层,提取传感器的空间特征,编码层之间通过扩张因果卷积相连接,扩大了感受野,提高了模型对长序列信息的捕获能力。在新公开的N-CMAPSS数据集上验证算法,实验结果表明,相比于实验中的对比模型,所提模型的RMSE和Score值均有提升,推理速度也优于其他模型。 展开更多
关键词 概率稀疏自注意力 剩余寿命预测 航空发动机 TRANSFORMER 深度学习
在线阅读 下载PDF
基于概率稀疏自注意力的IGBT模块剩余寿命跨工况预测 被引量:1
2
作者 钟智伟 王誉翔 +3 位作者 黄亦翔 肖登宇 夏鹏程 刘成良 《上海交通大学学报》 EI CAS CSCD 北大核心 2023年第8期1005-1015,共11页
为提高绝缘栅双极型晶体管(IGBT)模块跨工况剩余寿命的预测精度以提升其可靠性,针对不同工况下IGBT模块的瞬态热阻特征提出一种基于概率稀疏自注意力机制和迁移学习的剩余使用寿命预测方法.搭建了IGBT模块加速老化试验台,在不同温度区... 为提高绝缘栅双极型晶体管(IGBT)模块跨工况剩余寿命的预测精度以提升其可靠性,针对不同工况下IGBT模块的瞬态热阻特征提出一种基于概率稀疏自注意力机制和迁移学习的剩余使用寿命预测方法.搭建了IGBT模块加速老化试验台,在不同温度区间进行IGBT模块功率循环实验,采集不同工况下该模块全生命周期状态数据,计算获得IGBT模块衰退过程中的瞬态热阻变化数据,提取并筛选能准确反映IGBT模块老化状态的瞬态热阻特征,并使用所提方法开展跨工况剩余使用寿命预测.实验结果表明,提出的IGBT模块剩余寿命的跨工况预测方法精度明显优于其他对比方法,特别是IGBT模块早期衰退过程中的剩余寿命预测精度得到了显著提升. 展开更多
关键词 绝缘栅双极型晶体管模块 瞬态热阻 剩余寿命预测 概率稀疏自注意力 迁移学习
在线阅读 下载PDF
基于概率稀疏自注意力模型的非侵入式负荷分解 被引量:5
3
作者 陈俊 彭勇刚 +2 位作者 凌家源 蔡田田 邓清唐 《电网技术》 EI CSCD 北大核心 2022年第10期3932-3939,共8页
非侵入式负荷分解能将聚合能量分解为设备级的能源消耗,在能源管理、设备故障检测等领域具有重要意义。面向低频数据,提出了一种基于深度学习的非侵入式负荷分解方法。该方法利用自然语言处理领域的多头概率稀疏自注意力模型搭建核心分... 非侵入式负荷分解能将聚合能量分解为设备级的能源消耗,在能源管理、设备故障检测等领域具有重要意义。面向低频数据,提出了一种基于深度学习的非侵入式负荷分解方法。该方法利用自然语言处理领域的多头概率稀疏自注意力模型搭建核心分解网络,以一维的总功率序列作为输入,使用卷积和池化进行特征的提取,结合位置编码增强序列中数据之间的内在联系,再用核心分解网络进行特征处理;然后经过转置卷积和全连接进行特征映射,产生一维的单个电器功率,从而实现负荷的分解。最后使用英国家用电器级电力数据集(UK domestic appliance-level electricity,UK-Dale)对模型进行训练和验证,并与现有的3种基准负荷分解方法进行对比。结果表明,所提分解方法的分解性能有明显进步。 展开更多
关键词 非侵入式负荷分解 深度学习 位置编码 概率稀疏自注意力模型
在线阅读 下载PDF
基于概率化稀疏自注意力LSTM的锂离子电池健康状态预测 被引量:1
4
作者 关燕鹏 刘成刚 +1 位作者 相洪涛 张晓宇 《控制工程》 CSCD 北大核心 2024年第10期1833-1840,共8页
针对锂离子电池健康状态(state of health,SOH)预测,提出了一种基于概率化稀疏自注意力机制(probsparseself-attentionmechanism,PSM)和长短期记忆(longshort-term memory,LSTM)神经网络的预测模型。首先,提取锂离子电池容量数据并进行... 针对锂离子电池健康状态(state of health,SOH)预测,提出了一种基于概率化稀疏自注意力机制(probsparseself-attentionmechanism,PSM)和长短期记忆(longshort-term memory,LSTM)神经网络的预测模型。首先,提取锂离子电池容量数据并进行窗口化处理,利用位置嵌入获取高维数据之间的特征信息并对数据进行位置编码。然后,引入PSM对输入数据的权重进行稀疏性判断,增加对SOH预测具有关键影响的因素的权重。最后,利用LSTM神经网络捕获数据之间的时序特征进行锂离子电池SOH预测。实验结果表明,与其他常用的锂离子电池SOH预测模型相比,所提模型可以减少预测误差,具有更好的预测性能。 展开更多
关键词 锂离子电池 LSTM神经网络 健康状态 概率稀疏自注意力机制
在线阅读 下载PDF
基于策略梯度Informer模型的滚动轴承剩余寿命预测 被引量:3
5
作者 熊佳豪 李锋 +2 位作者 汤宝平 汪永超 罗玲 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第4期273-286,共14页
典型的编码器-解码器——Transformer存在二次时间复杂度、高内存使用及模型结构复杂等固有限制,造成Transformer用于滚动轴承剩余寿命(RUL)预测会表现出较低预测精度和较低计算效率的问题。为此,提出一种新型编解码器——策略梯度Infor... 典型的编码器-解码器——Transformer存在二次时间复杂度、高内存使用及模型结构复杂等固有限制,造成Transformer用于滚动轴承剩余寿命(RUL)预测会表现出较低预测精度和较低计算效率的问题。为此,提出一种新型编解码器——策略梯度Informer(PG-Informer)模型,并将其应用于滚动轴承RUL预测。首先,在PG-In-former的新型编解码器体系结构——Informer中设计了概率稀疏自注意力(PSSA)机制替代Transformer中原有的自注意力机制,以提高非线性逼近能力并减少时间和空间复杂度;然后,PG-Informer采用自注意力蒸馏(SAD)操作减少参数维度和参数量,并提高了对时间序列的预测鲁棒性;此外,PG-Informer的生成式解码器对解码输入进行一步解码输出预测结果,无需动态多步解码,提升了对时间序列的预测速度;最后,构造了策略梯度学习算法来提高对PG-Informer参数的训练速度。PG-Informer的以上优势使所提出的基于PG-Informer模型的滚动轴承RUL预测方法可以获得较高的预测精度、较好的鲁棒性和较高的计算效率。对辛辛那提大学智能维护系统中心的1号滚动轴承的RUL预测实验结果表明,所提出方法预测得到的RUL值为963min,其RUL预测误差仅为6.50%,比基于Transformer的RUL预测方法预测精度更高、预测误差更小、鲁棒性更好;所提出方法所耗费的RUL预测时间仅为132.37s,比基于Transformer的RUL预测方法的预测时间更短。以上实验结果验证了所提出方法的有效性。 展开更多
关键词 Informer模型 概率稀疏自注意力机制 策略梯度 滚动轴承 剩余寿命预测
在线阅读 下载PDF
基于TCN-Wpsformer混合模型的超短期风电功率预测 被引量:12
6
作者 徐钽 谢开贵 +3 位作者 王宇 胡博 邵常政 赵宇生 《电力自动化设备》 EI CSCD 北大核心 2024年第8期54-61,共8页
针对基于梯度下降的递归神经网络难以捕获时间跨度较长的风电功率长期依赖关系的问题,提出一种基于时间卷积网络(TCN)和窗口概率稀疏Transformer(Wpsformer)混合模型的超短期风电功率预测方法。将包含时间季节性特征的时间编码与包含原... 针对基于梯度下降的递归神经网络难以捕获时间跨度较长的风电功率长期依赖关系的问题,提出一种基于时间卷积网络(TCN)和窗口概率稀疏Transformer(Wpsformer)混合模型的超短期风电功率预测方法。将包含时间季节性特征的时间编码与包含原始数据位置信息的绝对位置编码进行拼接,引入TCN提取时间片段特征,将时间片段特征融入自注意力机制,以时间片段的相关性联系替代时间点的相关性联系。通过Wpsformer模型多步输出超短期风电功率预测值,与原始Transformer模型相比,Wpsformer模型使用窗口概率稀疏自注意力机制,在捕获长期依赖关系的同时筛选出重要程度相对较高的时间片段特征进行计算,提高了预测精度且降低了计算成本。曹店风电场的算例结果表明,所提模型在预测精度方面具有明显优势。消融实验证明了所提模型各模块的必要性。 展开更多
关键词 超短期风电功率预测 时间卷积网络 窗口概率稀疏Transformer 窗口概率稀疏自注意力机制
在线阅读 下载PDF
基于少数据样本的滚动轴承寿命分段预测方法
7
作者 张朋 马孝育 +3 位作者 王恒迪 李畅 邓四二 邱小彪 《机电工程》 CAS 北大核心 2024年第8期1415-1422,共8页
针对少数据样本下,滚动轴承难以准确预测剩余使用寿命(RUL)的问题,提出了一种结合卷积长短期记忆网络(ConvLSTM)与对抗性判别域自适应网络(ADDA)的轴承寿命分段预测方法。首先,利用稀疏概率自注意力机制对特征集进行了筛选,提取了具有... 针对少数据样本下,滚动轴承难以准确预测剩余使用寿命(RUL)的问题,提出了一种结合卷积长短期记忆网络(ConvLSTM)与对抗性判别域自适应网络(ADDA)的轴承寿命分段预测方法。首先,利用稀疏概率自注意力机制对特征集进行了筛选,提取了具有时变性的特征集,以获取最优全局特征,确定分段点以作为ADDA模型的输入;然后,针对不同阶段的退化特点建立了相应的健康评估指标;对处于健康状态的轴承,利用ConvLSTM网络预测了轴承健康阶段的寿命,将健康阶段预测数据作为局部特征输入ADDA网络与最优特征集(全局特征),进行了对抗训练,以实现故障阶段的寿命预测,并使用全连接层输出滚动轴承的预测剩余使用寿命;最后,采用PHM2012数据集与工程试验数据分别对模型进行了验证。研究结果表明:相较于ConvLSTM模型、RNN-HI模型、CNN-LSTM模型,ConvLSTM-ADDA寿命预测方法的平均绝对误差分别降低了78.16%、53.14%、67.13%,平均得分分别提高了66.42%、92.81%、32.37%;相较于LSTM模型、CNN-LSTM模型以及Transformer模型,ConvLSTM-ADDA寿命预测方法的均方误差分别降低了80.11%、54.95%、55.94%。因此,该算法模型能够实现对较少数据样本的轴承寿命进行RUL预测的目的,且具有较高的精度。 展开更多
关键词 对抗性判别域适应网络 卷积长短期记忆网络 稀疏概率自注意力机制 少数据样本 分阶段寿命预测 剩余使用寿命
在线阅读 下载PDF
基于Informer算法的燃料电池寿命估算
8
作者 施永 赵洪霄 +3 位作者 谢缔 汪亮亮 苏建徽 解宝 《太阳能学报》 2025年第8期240-248,共9页
为解决长短期记忆网络(LSTM)和门控循环单元神经网络(GRU)在捕捉长期依赖关系上的不足以及估算精度较低的问题,该文提出基于Informer算法的燃料电池寿命估算方法,旨在提高估算的准确性和效率。该方法采用加权平均法和皮尔逊系数法对数... 为解决长短期记忆网络(LSTM)和门控循环单元神经网络(GRU)在捕捉长期依赖关系上的不足以及估算精度较低的问题,该文提出基于Informer算法的燃料电池寿命估算方法,旨在提高估算的准确性和效率。该方法采用加权平均法和皮尔逊系数法对数据进行平滑处理,以增强数据的趋势性并减少噪声影响。结合Informer模型的多尺度信息融合和长期依赖建模能力,设计了一个能够实现燃料电池寿命在线估算的寿命估算框架。随后设计3组实验与传统的LSTM和GRU模型进行比较,当训练集占比80%时,Informer模型U_(MAE)、U_(RMSE)、U_(MAPE)均最小,估算精度高于LSTM和GRU模型。说明Informer模型在长时间序列估算方面表现出色,为燃料电池寿命估算提供可靠的依据。 展开更多
关键词 神经网络 燃料电池 并行处理 寿命估算 多头概率稀疏自注意力机制
在线阅读 下载PDF
基于Attention与改进SCINet模型的无线传感器网络能量预测与分簇路由算法
9
作者 金崇强 徐震 王雪山 《河南师范大学学报(自然科学版)》 2025年第5期52-59,I0010,共9页
针对能量收集无线传感器网络中,能量预测精度不佳、节点能量利用效率过低和网络难以持续运行等问题,提出了一种改进样本卷积交互神经网络(sample convolution and interaction network,SCINet)预测模型,并引入概率稀疏自注意力机制,在... 针对能量收集无线传感器网络中,能量预测精度不佳、节点能量利用效率过低和网络难以持续运行等问题,提出了一种改进样本卷积交互神经网络(sample convolution and interaction network,SCINet)预测模型,并引入概率稀疏自注意力机制,在新特征序列的每个时间步上计算注意力权重,捕捉重要特征,提高模型预测精度.最后,根据节点剩余能量、预测未来可收集的太阳能能量,对分簇路由算法进行改进.仿真实验结果表明,该能量预测模型具备更高的预测精度和泛化能力.在能量预测模型的基础上,改进的分簇路由算法,能有效地延长无线传感器网络的生命周期. 展开更多
关键词 能量预测 样本卷积交互神经网络 概率稀疏自注意力机制 分簇路由算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部