期刊文献+
共找到573篇文章
< 1 2 29 >
每页显示 20 50 100
基于优化概率神经网络的化工过程故障诊断
1
作者 庞智敏 王亚君 富斯源 《化学工程》 北大核心 2025年第3期89-94,共6页
为了保证化工生产过程安全稳定运行,对生产过程进行实时故障检测变得尤为重要。传统的PNN(概率神经网络)故障诊断方法,由于需要根据经验选取平滑因子使得模型分类准确率降低。为提高PNN模型的分类正确率和诊断速度,提出一种基于MSIDBO(... 为了保证化工生产过程安全稳定运行,对生产过程进行实时故障检测变得尤为重要。传统的PNN(概率神经网络)故障诊断方法,由于需要根据经验选取平滑因子使得模型分类准确率降低。为提高PNN模型的分类正确率和诊断速度,提出一种基于MSIDBO(多策略改进蜣螂优化)算法的PNN化工过程故障诊断方法。将提出的方法在田纳西-伊斯曼上进行仿真实验,并与PNN、DBO-PNN(蜣螂优化的概率神经网络)和SSA-PNN(麻雀搜索算法优化的概率神经网络)进行比较,结果表明文中提出的方法在准确率和运行速度上均有显著优势。 展开更多
关键词 故障诊断 多策略改进蜣螂算法 概率神经网络 田纳西-伊斯曼过程
在线阅读 下载PDF
基于概率神经网络的潜舰武器系统故障诊断 被引量:1
2
作者 冯林平 王佳玉 《舰船科学技术》 北大核心 2024年第16期182-185,共4页
针对传统故障诊断方法检测某型潜舰导弹武器系统故障准确率不高、耗时长的问题,提出基于概率神经网络的智能诊断方法。介绍该网络的典型结构及优势所在,以某型潜舰导弹武器系统为验证对象,选取合适特征向量、归纳合理故障类型、建立相... 针对传统故障诊断方法检测某型潜舰导弹武器系统故障准确率不高、耗时长的问题,提出基于概率神经网络的智能诊断方法。介绍该网络的典型结构及优势所在,以某型潜舰导弹武器系统为验证对象,选取合适特征向量、归纳合理故障类型、建立相应神经网络,并运用Matlab仿真验证。结果表明在现有数据库中,概率神经网络对该系统的故障诊断正确率为77.8%。这表明基于概率神经网络的故障诊断基本能够区分该系统故障类型,大大减少了部队故障诊断时间和人力投入。 展开更多
关键词 智能检测 概率神经网络 潜舰导弹武器系统 故障诊断
在线阅读 下载PDF
蜣螂算法优化概率神经网络的变压器故障诊断 被引量:12
3
作者 宗琳 周晓华 +3 位作者 罗文广 刘胜永 张银 吴雪颖 《智慧电力》 北大核心 2024年第5期98-104,共7页
针对仅靠人工经验选取平滑因子的概率神经网络(PNN)变压器故障诊断模型存在诊断正确率偏低的问题,提出1种采用蜣螂算法(DBO)优化PNN平滑因子的变压器故障诊断模型。选取测试函数对DBO算法进行寻优测试,并与粒子群算法(PSO)、人工蜂群算... 针对仅靠人工经验选取平滑因子的概率神经网络(PNN)变压器故障诊断模型存在诊断正确率偏低的问题,提出1种采用蜣螂算法(DBO)优化PNN平滑因子的变压器故障诊断模型。选取测试函数对DBO算法进行寻优测试,并与粒子群算法(PSO)、人工蜂群算法(ABC)、灰狼优化算法(GWO)对比,DBO在寻优精度、收敛速度和避免局部最优方面更具优势;采用DBO对PNN平滑因子寻优以建立DBO-PNN诊断模型,并与PSO-PNN、ABC-PNN和GWO-PNN模型进行诊断对比,结果表明DBO-PNN模型的诊断效果更好,正确率达96%。 展开更多
关键词 变压器故障诊断 蜣螂算法 概率神经网络 油中溶解气体分析
在线阅读 下载PDF
基于概率神经网络和层次分析法的硐室群施工风险评估 被引量:2
4
作者 宗志栓 张逸飞 +4 位作者 林作忠 陈晨 杨航 邱泽刚 申玉生 《铁道标准设计》 北大核心 2024年第3期177-185,共9页
地下硐室群施工风险研究尚处于起步阶段,为快速准确评判风险因素,预防施工安全事故,利用概率神经网络(PNN)和层次分析法(AHP)建立风险评估模型,并研发硐室群施工风险评估软件。通过统计分析硐室群施工风险因素,设置工程地质、自然、设... 地下硐室群施工风险研究尚处于起步阶段,为快速准确评判风险因素,预防施工安全事故,利用概率神经网络(PNN)和层次分析法(AHP)建立风险评估模型,并研发硐室群施工风险评估软件。通过统计分析硐室群施工风险因素,设置工程地质、自然、设计施工和管理4个一级风险因素,23个风险控制指标,建立针对硐室群施工的风险指标体系。收集典型样本数据后,基于PNN对施工风险等级进行评判,同时采用AHP定量分析风险因素权重,迅速捕捉风险点,采取风险控制措施并优化施工方案。运用研发软件对重庆轨道交通18号线歇台子站硐室群施工进行风险评价,得到风险概率等级为Ⅳ,在施工过程中需要重点监测和控制地下水、围岩等级和支护及时性等带来的影响,实例评价结果与现场情况相吻合,验证了该评估软件的有效性和实用性。研究表明:针对硐室群施工建立的指标体系和评估方法能有效预测风险级别,实时指导施工过程,确保地下硐室群施工安全。 展开更多
关键词 硐室群 概率神经网络 层次分析法 风险评价 软件开发
在线阅读 下载PDF
基于PLS概率神经网络的桥门式起重机安全评估方法
5
作者 冯青 陈刚 +1 位作者 刘志凯 刘晓初 《机床与液压》 北大核心 2024年第24期56-63,共8页
针对传统概率神经网络对桥门式起重机进行安全评估时存在的网络结构复杂、参数繁多、运算费时等问题,提出一种基于偏最小二乘(PLS)的概率神经网络(PNN)的桥门式起重机安全评估方法。采用偏最小二乘法提取主成分,利用部分主成分替代原有... 针对传统概率神经网络对桥门式起重机进行安全评估时存在的网络结构复杂、参数繁多、运算费时等问题,提出一种基于偏最小二乘(PLS)的概率神经网络(PNN)的桥门式起重机安全评估方法。采用偏最小二乘法提取主成分,利用部分主成分替代原有的样本输入,降低输入的维数;利用有限的模式组合神经元替换通常的样本神经元,减少网络的节点和连接等参数,以简化网络,加快其收敛速度,并将输出结果进行离散化,提高模型的训练效率和推理速度。仿真试验结果表明:相比传统的PNN评估法,所提方法大幅缩短了训练与测试时间,验证了该方法的有效性,实现了桥门式起重机高效智能安全评估。 展开更多
关键词 桥门式起重机 概率神经网络(PNN) 偏最小二乘(PLS) 残差矩阵
在线阅读 下载PDF
基于椭圆概率神经网络的企业财务危机预警 被引量:3
6
作者 吴冲 张霞 张新颖 《统计与信息论坛》 CSSCI 2013年第2期18-22,共5页
在国际经济一体化的大环境下,随着企业竞争的日趋激烈,企业进行财务危机的预警显得尤为重要。基于椭圆概率神经网络的财务危机预警方法是概率神经网络的改进,考虑代表输入变量重要性的变量权值、代表样本有效范围的核宽倒数及代表样本... 在国际经济一体化的大环境下,随着企业竞争的日趋激烈,企业进行财务危机的预警显得尤为重要。基于椭圆概率神经网络的财务危机预警方法是概率神经网络的改进,考虑代表输入变量重要性的变量权值、代表样本有效范围的核宽倒数及代表样本可靠程度的数据权值,利用该方法对企业财务危机进行预测。实证分析结果证明:此方法的优越性有较高的预测准确性,能够为中国资本市场的发展提供很大的帮助。 展开更多
关键词 企业财务危机预警 椭圆概率神经网络 概率神经网络
在线阅读 下载PDF
基于Bagging的概率神经网络集成分类算法 被引量:43
7
作者 蒋芸 陈娜 +3 位作者 明利特 周泽寻 谢国城 陈珊 《计算机科学》 CSCD 北大核心 2013年第5期242-246,共5页
目前的神经网络较多集中在以BP算法为基础的BP神经网络上。针对BP神经网络的不足,在分析研究概率神经网络和机器学习的基础上,结合集成学习的思想,提出了基于Bagging的概率神经网络集成分类算法。理论分析和实验结果都表明,提出的算法... 目前的神经网络较多集中在以BP算法为基础的BP神经网络上。针对BP神经网络的不足,在分析研究概率神经网络和机器学习的基础上,结合集成学习的思想,提出了基于Bagging的概率神经网络集成分类算法。理论分析和实验结果都表明,提出的算法能够有效地降低分类误差,提高分类准确率,具有较好的泛化能力以及较快的执行速度,能够取得比传统的BP神经网络分类方法更好和更稳定的分类结果。 展开更多
关键词 分类 BP神经网络 概率神经网络 集成学习 BAGGING
在线阅读 下载PDF
基于小波包分析和概率神经网络的电磁法三电平变换器故障诊断方法 被引量:51
8
作者 于生宝 何建龙 +2 位作者 王睿家 李刚 苏发 《电工技术学报》 EI CSCD 北大核心 2016年第17期102-112,共11页
针对基于三电平变换器的电磁法发射机中功率开关器件开路故障特点和复杂工作环境,提出了针对性的故障诊断方法。该方法以变换器输出电压为原始信号,利用变采样频率的小波包分析方法提取特征向量,以提高对信号频率的分辨准确度。然后利... 针对基于三电平变换器的电磁法发射机中功率开关器件开路故障特点和复杂工作环境,提出了针对性的故障诊断方法。该方法以变换器输出电压为原始信号,利用变采样频率的小波包分析方法提取特征向量,以提高对信号频率的分辨准确度。然后利用核主成分分析对特征向量进行降维,可以简化分类器的结构,提高诊断时间。采用概率神经网络建立故障分类器,可以提高诊断方法的鲁棒性。在一台5 k W电磁法三电平变换器实验样机上进行实验和分析,实验结果表明该方法可以准确地进行故障诊断,有较好的诊断准确度、实时性和较强的鲁棒性,具有一定的工程应用价值。 展开更多
关键词 三电平变换器 电磁法发射机 小波包分析 核主成分分析 概率神经网络 故障诊断
在线阅读 下载PDF
基于概率神经网络算法的永磁同步直线电机局部退磁故障诊断研究 被引量:31
9
作者 张丹 赵吉文 +4 位作者 董菲 宋俊材 窦少昆 王辉 谢芳 《中国电机工程学报》 EI CSCD 北大核心 2019年第1期296-306,共11页
针对永磁同步直线电机(permanent magnet synchronous linear motor,PMSLM)的局部退磁故障问题,引入一种基于空间气隙磁密重构特征提取与概率神经网络(probabilistic neural network,PNN)算法相结合的局部退磁故障分类识别方法。采用等... 针对永磁同步直线电机(permanent magnet synchronous linear motor,PMSLM)的局部退磁故障问题,引入一种基于空间气隙磁密重构特征提取与概率神经网络(probabilistic neural network,PNN)算法相结合的局部退磁故障分类识别方法。采用等效磁化强度法分析永磁体在局部退磁情况下,PMSLM气隙磁密在不同空间位置的分布特性;利用有限元法定量计算PMSLM空间气隙中心线、气隙中心线上方、气隙中心线下方3个位置处的气隙磁密强度,将其融合为唯一识别退磁故障类型的特征量,并进行多种局部退磁故障类型下的仿真分析,建立了丰富的退磁故障样本库;建立神经网络和径向基网络,并对PNN网格结构进行优化,利用PNN分类算法实现局部退磁故障的精确分类识别,并进行分类器精度校验仿真实验。样机实验结果表明,所提方法能够准确辨识PMSLM局部退磁故障的组合类型,识别率高达到99.4%。 展开更多
关键词 永磁同步直线电机 气隙磁密 局部退磁故障 故障特征量 概率神经网络
在线阅读 下载PDF
基于主元分析-概率神经网络的制冷系统故障诊断 被引量:32
10
作者 梁晴晴 韩华 +1 位作者 崔晓钰 谷波 《化工学报》 EI CAS CSCD 北大核心 2016年第3期1022-1031,共10页
制冷系统由于内部物质形态的多样性以及系统参数间的高度耦合而较为复杂,也增加了出现故障后的检测及诊断难度。针对制冷系统常见的7种故障,包括局部故障与系统故障,运用主元分析法提取故障样本主要特征,对样本进行降维处理后,基于概率... 制冷系统由于内部物质形态的多样性以及系统参数间的高度耦合而较为复杂,也增加了出现故障后的检测及诊断难度。针对制冷系统常见的7种故障,包括局部故障与系统故障,运用主元分析法提取故障样本主要特征,对样本进行降维处理后,基于概率神经网络进行故障诊断。主元分析法可将原始的62个参数分解为相互独立的主元,根据累计贡献率选取一定量的主元,并将其样本输入概率神经网络进行故障诊断,结果表明结合主元分析后的概率神经网络在一定范围内对spread值不敏感,不仅诊断正确率有所提高,而且缩短了诊断耗时。可见,主元分析法的使用可有效优化概率神经网络的诊断性能。 展开更多
关键词 主元分析 概率神经网络 制冷系统 故障诊断 优化
在线阅读 下载PDF
利用概率神经网络预测成岩相——以鄂尔多斯盆地合水地区延长组长8段储层为例 被引量:18
11
作者 庞国印 唐俊 +2 位作者 王琪 马晓峰 廖朋 《特种油气藏》 CAS CSCD 北大核心 2013年第2期43-47,152-153,共5页
鄂尔多斯盆地合水地区延长组长8段储层非均质性强,传统的成岩相评价方法存在局限,提出了利用概率神经网络进行成岩相预测的新方法。首先对输入项参数进行了研究,选择沉积微相和测井曲线中的自然伽马(GR)、自然电位(SP)、井径测井(CAL)... 鄂尔多斯盆地合水地区延长组长8段储层非均质性强,传统的成岩相评价方法存在局限,提出了利用概率神经网络进行成岩相预测的新方法。首先对输入项参数进行了研究,选择沉积微相和测井曲线中的自然伽马(GR)、自然电位(SP)、井径测井(CAL)、声波时差(AC)、补偿中子(CNL)、密度测井(DEN)数值作为输入层参数,然后对概率神经网络进行训练和检验,最后利用建立好的神经网络对研究区成岩相进行预测,准确率达到90%以上。该方法适用于未取心井区域的成岩相研究。 展开更多
关键词 概率神经网络 成岩相 长8储层 合水地区 鄂尔多斯盆地
在线阅读 下载PDF
基于相关系数矩阵和概率神经网络的局部放电模式识别 被引量:24
12
作者 苑津莎 尚海昆 +1 位作者 王瑜 靳松 《电力系统保护与控制》 EI CSCD 北大核心 2013年第13期110-115,共6页
针对变压器局部放电模式分类过程中特征参数维数过高的问题,提出了一种基于相关系数矩阵的参数降维方法。利用提取出的变压器局部放电信号的特征参数构造相关系数矩阵,通过分析放电信号18个特征参数间的相关性,删除具有相似分类能力的... 针对变压器局部放电模式分类过程中特征参数维数过高的问题,提出了一种基于相关系数矩阵的参数降维方法。利用提取出的变压器局部放电信号的特征参数构造相关系数矩阵,通过分析放电信号18个特征参数间的相关性,删除具有相似分类能力的特征参数,之后引入分离度指标来衡量特征向量的分类能力大小,提取出6个具有较高分类能力的特征向量,最后通过概率神经网络进行模式识别。结果表明该降维方法有效降低了特征参数的维数,简化了分类器结构,在小样本情况下对于概率神经网络模式分类器具有较高的识别率,识别效果优于传统BP神经网络。 展开更多
关键词 相关系数矩阵 概率神经网络 变压器 局部放电 模式识别
在线阅读 下载PDF
用概率神经网络进行结构损伤位置识别 被引量:52
13
作者 王柏生 倪一清 高赞明 《振动工程学报》 EI CSCD 北大核心 2001年第1期60-64,共5页
在不计测量误差情况下 ,神经网络能够成功地识别损伤位置及其程度 ,但在测量噪声影响下 ,神经网络的损伤识别效果则比较差。考虑到基于多变量模式分类的概率神经网络具有处理受噪声污染的测试数据的能力 ,本文将可能的损伤位置作为模式... 在不计测量误差情况下 ,神经网络能够成功地识别损伤位置及其程度 ,但在测量噪声影响下 ,神经网络的损伤识别效果则比较差。考虑到基于多变量模式分类的概率神经网络具有处理受噪声污染的测试数据的能力 ,本文将可能的损伤位置作为模式类 ,利用概率神经网络的分类能力来识别结构的损伤位置。针对两个算例 :一个六层框架和一个两层框架进行数值模拟分析 ,并将概率神经网络与 BP网络进行了比较。结果表明 ,概率神经网络具有更好的识别效果 。 展开更多
关键词 概率神经网络 结构损伤位置识别 振动测试 测量噪声 土木工程
在线阅读 下载PDF
基于极点对称模态分解和概率神经网络的轴承故障诊断 被引量:15
14
作者 张淑清 徐剑涛 +3 位作者 姜安琦 李军锋 宿新爽 姜万录 《中国机械工程》 EI CAS CSCD 北大核心 2017年第4期425-431,共7页
针对复杂非线性的滚动轴承系统,提出了极点对称模态分解(ESMD)和概率神经网络(PNN)相结合的滚动轴承故障诊断方法。ESMD将固有模态函数的定义进行扩充,采用内部极点对称直接插值的方法替代外部包络线插值,引入最优的自适应全局曲线(AGM... 针对复杂非线性的滚动轴承系统,提出了极点对称模态分解(ESMD)和概率神经网络(PNN)相结合的滚动轴承故障诊断方法。ESMD将固有模态函数的定义进行扩充,采用内部极点对称直接插值的方法替代外部包络线插值,引入最优的自适应全局曲线(AGM)的概念优化分解的趋势线,并由此确定最佳的模态分解次数。PNN是一种基于核函数逼近的神经网络分类器,将指数函数引入神经网络用来替代S型激活函数并进行重新构造,突出体现了梯度最速下降法的概念,减少实际和预测的输出函数之间的误差。通过对经验模态分解(EMD)、屏蔽经验模态分解(MEMD)和ESMD方法进行信号仿真分解对比,以及采用ESMD和PNN对故障数据进行处理,结果表明,该方法能够更加有效地对故障信号进行识别。 展开更多
关键词 滚动轴承 极点对称模态分解 概率神经网络 故障诊断
在线阅读 下载PDF
基于小波熵和概率神经网络的配电网电压暂降源识别方法 被引量:53
15
作者 贾勇 何正友 赵静 《电网技术》 EI CSCD 北大核心 2009年第16期63-69,共7页
分析了短路故障、感应电动机启动和变压器投运引起电压暂降的原理及各类电压暂降的特征,提出一种基于小波熵(wavelet entropy,WE)和概率神经网络(probability neural network,PNN)的电压暂降源识别方法。提取信号的小波能谱熵和小波系... 分析了短路故障、感应电动机启动和变压器投运引起电压暂降的原理及各类电压暂降的特征,提出一种基于小波熵(wavelet entropy,WE)和概率神经网络(probability neural network,PNN)的电压暂降源识别方法。提取信号的小波能谱熵和小波系数熵特征向量,并将其输入概率神经网络,实现电压暂降源的自动识别。利用Matlab/Simulink建立简单配电网的仿真模型进行验证,结果表明,基于小波熵和概率神经网络的方法能很好地识别电压暂降源。 展开更多
关键词 电压暂降源 小波熵 概率神经网络 配电网
在线阅读 下载PDF
基于LMD多尺度熵和概率神经网络的滚动轴承故障诊断方法 被引量:37
16
作者 孟宗 胡猛 +1 位作者 谷伟明 赵东方 《中国机械工程》 EI CAS CSCD 北大核心 2016年第4期433-437,共5页
研究了一种基于LMD多尺度熵和概率神经网络的滚动轴承故障诊断方法。该方法将故障信号自适应地分解为若干乘积函数分量,然后将各分量的多尺度熵作为故障特征向量输入概率神经网络进行模式识别,实现了对损伤位置和损伤程度的诊断。将该... 研究了一种基于LMD多尺度熵和概率神经网络的滚动轴承故障诊断方法。该方法将故障信号自适应地分解为若干乘积函数分量,然后将各分量的多尺度熵作为故障特征向量输入概率神经网络进行模式识别,实现了对损伤位置和损伤程度的诊断。将该方法与基于LMD时域统计量和神经网络的滚动轴承故障诊断方法进行了对比。实验结果表明,基于LMD多尺度熵和概率神经网络的方法能对滚动轴承故障进行有效的识别与诊断。 展开更多
关键词 局部均值分解 故障特征提取 多尺度熵 概率神经网络 故障诊断
在线阅读 下载PDF
基于多特征参数和概率神经网络的滚动轴承故障诊断方法 被引量:14
17
作者 裴峻峰 毕昆磊 +2 位作者 吕苗荣 贺超 沈科君 《中国机械工程》 EI CAS CSCD 北大核心 2014年第15期2055-2058,2075,共5页
针对滚动轴承故障振动信号的非平稳特性,提出了一种基于多特征参数和概率神经网络的滚动轴承故障诊断方法。首先利用经验模态分解(EMD)方法将采集到的滚动轴承原始振动信号分解为有限个固有模式函数(IMF)之和,然后提取表征故障信息的若... 针对滚动轴承故障振动信号的非平稳特性,提出了一种基于多特征参数和概率神经网络的滚动轴承故障诊断方法。首先利用经验模态分解(EMD)方法将采集到的滚动轴承原始振动信号分解为有限个固有模式函数(IMF)之和,然后提取表征故障信息的若干个IMF的能量、峭度和偏度作为概率神经网络的输入参数来进行故障分类。试验结果表明,该方法可以准确、有效地识别滚动轴承的工作状态和故障类型,是一种可行的滚动轴承故障诊断方法。 展开更多
关键词 经验模态分解(EMD) 多特征参数 概率神经网络 故障诊断
在线阅读 下载PDF
利用红外图像特征和径向基概率神经网络识别不同湿度条件下绝缘子的污秽等级 被引量:59
18
作者 何洪英 姚建刚 +1 位作者 蒋正龙 李伟伟 《中国电机工程学报》 EI CSCD 北大核心 2006年第8期117-123,共7页
提出一种利用污秽绝缘子红外图像特征和径向基概率神经网络(RBPNN)来检测不同湿度条件下自然污秽绝缘子污秽等级的新方法。采用修正后的阿尔法滤波器和基于波谷的图像分割方法对绝缘子红外图像进行预处理。提取了不同湿度条件下的图像背... 提出一种利用污秽绝缘子红外图像特征和径向基概率神经网络(RBPNN)来检测不同湿度条件下自然污秽绝缘子污秽等级的新方法。采用修正后的阿尔法滤波器和基于波谷的图像分割方法对绝缘子红外图像进行预处理。提取了不同湿度条件下的图像背景(周围环境)的平均温度、绝缘子盘面区域的最高温度、绝缘子盘面区域的平均温度、绝缘子盘面温度分布的方差值作为反映污秽等级的4个特征量。通过RBPNN建立了湿度及污秽特征与污秽等级之间的映射关系,并利用训练好的RBPNN识别绝缘子污秽等级;另外提出一种梯度算法与随机性方法相结合的算法来确定RBPNN的隐中心、宽度控制参数及权值矩阵。实验结果证明该方法能有效识别不同湿度条件下绝缘子的污秽等级。 展开更多
关键词 污秽绝缘子红外图像特征 修正后的阿尔法滤波器 图像分割 径向基概率神经网络 梯度算法与随机性方法 污秽级别识别
在线阅读 下载PDF
基于径向基概率神经网络的输电导线缺陷状态识别 被引量:38
19
作者 黄新波 章小玲 +3 位作者 张烨 杨璐雅 刘成 李文静 《电力系统自动化》 EI CSCD 北大核心 2020年第3期201-210,共10页
输电导线作为承担电能传输任务的重要部件,及时发现其本体缺陷对指导维修避免重大电力事故的发生具有重要意义。考虑到无人机巡检中输电导线背景的复杂性和导线表面缺陷检测的困难度,提出一种基于径向基概率神经网络的输电导线缺陷状态... 输电导线作为承担电能传输任务的重要部件,及时发现其本体缺陷对指导维修避免重大电力事故的发生具有重要意义。考虑到无人机巡检中输电导线背景的复杂性和导线表面缺陷检测的困难度,提出一种基于径向基概率神经网络的输电导线缺陷状态识别方法。首先,依次采用加权色差法、最大类间方差法以及形态学滤波实现复杂背景下输电导线的准确分割。其次,将分割出的导线区域等距划分为10个导线子图像,通过Gabor滤波器获得输电导线8个角度、5个尺度的40幅纹理增强子图像,提取各个子图像的粗糙度、对比度和方向度3个纹理特征量,结合特征方差比筛选出10个强纹理特征;最后,将10个强纹理特征量作为径向基概率神经网络的输入,完成输电导线缺陷状态的识别。实验结果表明所提方法可以实现复杂背景下输电导线快速分割与缺陷状态的准确识别,为无人机巡检中输电导线的运行状态检测提供了新的思路。 展开更多
关键词 输电导线 加权色差法 图像分割 纹理特征提取 径向基概率神经网络
在线阅读 下载PDF
大跨悬索桥损伤定位的自适应概率神经网络研究 被引量:19
20
作者 姜绍飞 刘明 +1 位作者 倪一清 高赞明 《土木工程学报》 EI CSCD 北大核心 2003年第8期74-78,共5页
由于概率神经网络(PNN)以贝叶斯概率方法描述测量数据,因而PNN在有噪声条件下的结构损伤检测方面,具有巨大的潜力。而PNN中高斯核函数的宽度,严重影响网络的泛化能力,本文提出了一种运用自适应PNN进行复杂结构的损伤定位研究方法,并与传... 由于概率神经网络(PNN)以贝叶斯概率方法描述测量数据,因而PNN在有噪声条件下的结构损伤检测方面,具有巨大的潜力。而PNN中高斯核函数的宽度,严重影响网络的泛化能力,本文提出了一种运用自适应PNN进行复杂结构的损伤定位研究方法,并与传统PNN对大跨悬索桥的损伤定位进行了仿真性能比较;同时讨论了噪声程度、特征向量简化对损伤识别精度的影响。研究发现,运用自适应PNN进行损伤定位,不仅性能优于传统PNN,而且进行特征向量简化时,可以提高损伤定位的识别精度。 展开更多
关键词 概率神经网络 损伤定位 识别精度 噪声
在线阅读 下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部