针对兴趣点(point of interest,POI)推荐中用户-POI交互矩阵数据稀疏问题,当前研究仅通过探索地理位置、内容信息及社会关系等上下文因素来缓解该问题,缺乏对这些上下文因素共同作用情况的综合分析及利用.为此,采用概率生成的方法提出...针对兴趣点(point of interest,POI)推荐中用户-POI交互矩阵数据稀疏问题,当前研究仅通过探索地理位置、内容信息及社会关系等上下文因素来缓解该问题,缺乏对这些上下文因素共同作用情况的综合分析及利用.为此,采用概率生成的方法提出一种内容和地点感知的主题模型(content-location-aware topic model,CLATM),用以模拟用户在决策过程中的签到行为.该模型由内容主题建模和地点主题建模两个核心模块构成,用户签到内容依赖内容主题和地点主题,内容主题和地点主题在一定程度上共同决定用户签到地点,地理位置依赖于地点主题并服从高斯分布.该模型不仅恰当地整合了内容、地点和地理位置等重要的上下文因素,且充分利用这些因素之间的潜在关系有效缓解了数据稀疏性.在Foursquare和Yelp两个真实的位置社交网络数据集上对CLATM进行性能评测,实验结果表明,该模型在召回率(recall)和归一化折损累计增益(normalized discounted cumulative gain,NDCG)指标上均优于基准,recall@20和NDCG@20最大分别提高约141.09%和94.44%.综合使用上下文因素的共同作用能有效提升POI推荐性能.展开更多
随着大数据技术的快速发展,推荐系统成为大数据领域里的一个重要的研究方向.随着基于位置社交网络(Location-Based Social Networks,LBSN)的快速发展,兴趣点(Point-Of-Interest,POI)推荐成为一个重要的研究热点,帮助人们发现有趣的并吸...随着大数据技术的快速发展,推荐系统成为大数据领域里的一个重要的研究方向.随着基于位置社交网络(Location-Based Social Networks,LBSN)的快速发展,兴趣点(Point-Of-Interest,POI)推荐成为一个重要的研究热点,帮助人们发现有趣的并吸引人的位置,特别是当用户在异地旅行的时候.由于用户的签到行为具有高稀疏性,为兴趣点推荐带来很大的挑战.为处理用户签到数据的稀疏性问题,越来越多的研究结合地理影响、时间效应、社会相关性、内容信息和流行度影响这些方面的因素为提高兴趣点推荐的性能.然而,目前的研究缺乏一种综合分析上述所有因素共同作用的方法来处理兴趣点的数据稀疏问题,特别是异地推荐场景被目前大多数研究工作所忽略.针对以上所述的挑战,文中提出一种联合概率生成模型,称为GTSCP,模拟用户签到行为的决策过程,该模型有效地融合上述因素来处理数据稀疏性,特别是异地推荐场景.文章所提的兴趣点推荐方法包含离线模型和在线推荐两个部分.文中所提的GTSCP联合模型支持本地和异地两种推荐场景.文章在多个真实LBSNs的大规模签到数据集上进行实验,结果表明该算法相比其它先进的兴趣点推荐算法具有更好的推荐效果.展开更多
文摘随着大数据技术的快速发展,推荐系统成为大数据领域里的一个重要的研究方向.随着基于位置社交网络(Location-Based Social Networks,LBSN)的快速发展,兴趣点(Point-Of-Interest,POI)推荐成为一个重要的研究热点,帮助人们发现有趣的并吸引人的位置,特别是当用户在异地旅行的时候.由于用户的签到行为具有高稀疏性,为兴趣点推荐带来很大的挑战.为处理用户签到数据的稀疏性问题,越来越多的研究结合地理影响、时间效应、社会相关性、内容信息和流行度影响这些方面的因素为提高兴趣点推荐的性能.然而,目前的研究缺乏一种综合分析上述所有因素共同作用的方法来处理兴趣点的数据稀疏问题,特别是异地推荐场景被目前大多数研究工作所忽略.针对以上所述的挑战,文中提出一种联合概率生成模型,称为GTSCP,模拟用户签到行为的决策过程,该模型有效地融合上述因素来处理数据稀疏性,特别是异地推荐场景.文章所提的兴趣点推荐方法包含离线模型和在线推荐两个部分.文中所提的GTSCP联合模型支持本地和异地两种推荐场景.文章在多个真实LBSNs的大规模签到数据集上进行实验,结果表明该算法相比其它先进的兴趣点推荐算法具有更好的推荐效果.