飞机机动识别在量化飞行员训练效果、预测对方战术意图及获取战场主动权等方面有着重要意义,然而战场数据的高度不平衡性严重制约了该技术的实际应用。近年来,生成式人工智能迅猛发展,其中,去噪扩散概率模型(Denoising Diffusion Probab...飞机机动识别在量化飞行员训练效果、预测对方战术意图及获取战场主动权等方面有着重要意义,然而战场数据的高度不平衡性严重制约了该技术的实际应用。近年来,生成式人工智能迅猛发展,其中,去噪扩散概率模型(Denoising Diffusion Probability Model,DDPM)在视觉领域展现出卓越的样本生成能力,受此启发,本文提出了一种基于马尔可夫转移场(Markov Transfer Field,MTF)的时序数据可视化方法:通过将飞机机动时序数据转换为二维图像,并结合DDPM生成新样本,有效解决样本不平衡问题,同时将时序分类任务转化为图像分类任务。为此,本文设计了一种新型分类网络架构,深度融合MobileNetV3的高效局部特征提取能力与Swin-Transformer的全局注意力机制优势,构建了融合可视化方法、DDPM生成模型与分类网络的飞机机动识别方法。实验结果表明,该方法在飞机机动识别任务中的精度显著优于图像分类领域的其他经典模型。展开更多
文摘飞机机动识别在量化飞行员训练效果、预测对方战术意图及获取战场主动权等方面有着重要意义,然而战场数据的高度不平衡性严重制约了该技术的实际应用。近年来,生成式人工智能迅猛发展,其中,去噪扩散概率模型(Denoising Diffusion Probability Model,DDPM)在视觉领域展现出卓越的样本生成能力,受此启发,本文提出了一种基于马尔可夫转移场(Markov Transfer Field,MTF)的时序数据可视化方法:通过将飞机机动时序数据转换为二维图像,并结合DDPM生成新样本,有效解决样本不平衡问题,同时将时序分类任务转化为图像分类任务。为此,本文设计了一种新型分类网络架构,深度融合MobileNetV3的高效局部特征提取能力与Swin-Transformer的全局注意力机制优势,构建了融合可视化方法、DDPM生成模型与分类网络的飞机机动识别方法。实验结果表明,该方法在飞机机动识别任务中的精度显著优于图像分类领域的其他经典模型。