该文针对雷达目标高分辨距离像(High-Resolution Range Profile,HRRP)识别中距离单元回波幅值统计建模所面临的概率密度模型选择问题,提出一种基于半参数化概率密度估计的雷达目标识别方法。半参数化概率密度估计从参数化概率密度估计出...该文针对雷达目标高分辨距离像(High-Resolution Range Profile,HRRP)识别中距离单元回波幅值统计建模所面临的概率密度模型选择问题,提出一种基于半参数化概率密度估计的雷达目标识别方法。半参数化概率密度估计从参数化概率密度估计出发,有效利用了高分辨距离像各距离单元幅值近似服从Gamma分布的经验知识,并且通过非参数化修正因子对Gamma模型进行修正,达到参数化方法和非参数化方法优缺互补的目的。基于5种飞机模型高分辨距离像数据的仿真实验证明了该文方法的有效性。展开更多
针对欠定盲源分离中混合矩阵估计精度不佳的问题,本文提出了一种结合带噪声的基于密度的空间聚类(combining density-based spatial clustering of application with noise,DBSCAN)和概率密度估计的混合矩阵估计算法。首先,通过向量转...针对欠定盲源分离中混合矩阵估计精度不佳的问题,本文提出了一种结合带噪声的基于密度的空间聚类(combining density-based spatial clustering of application with noise,DBSCAN)和概率密度估计的混合矩阵估计算法。首先,通过向量转换方式获得单声源时频点检测准则,并基于此准则从混合信号中检测出单声源点。其次,利用基于密度的空间聚类算法对单声源点进行聚类,由此估计出声源个数以及各类别所属的单声源点。再次,利用概率密度估计获得各类别的聚类中心,并构成混合矩阵。所提混合矩阵估计方法不需要提前设定声源个数,并且避免了由于数据分布不均所造成的聚类效果差的问题。最后,采用压缩感知技术实现源信号恢复,从而从混合信号中分离出各个声源信号。实验结果表明,本文所提的混合矩阵估计方法在声源个数未知的情况下,能够准确估计出混合矩阵;并且分离出的信号具有较高的质量。展开更多
现有的距离度量学习算法都是假设训练数据和测试数据服从相同的分布,但是该假设在实际中不一定成立。当训练数据和测试数据的分布不同时,利用训练数据学习得到的度量函数可能难以适用于测试数据。针对上述问题,本文在NCA(Neighbourhood ...现有的距离度量学习算法都是假设训练数据和测试数据服从相同的分布,但是该假设在实际中不一定成立。当训练数据和测试数据的分布不同时,利用训练数据学习得到的度量函数可能难以适用于测试数据。针对上述问题,本文在NCA(Neighbourhood Components Analysis)度量学习方法的基础上,通过引入概率密度比值对目标函数加权,提出了一种采用概率密度比值估计的距离度量学习方法(Distance metric learning with ProbabilityDensity Ratio Estimation,DML-PDR)。在UCI数据集和Corel图像库上的KNN分类实验表明,新方法克服了传统度量学习方法的不一致问题,提高了分类的准确率。展开更多
快速搜索和找到密度峰DPC(clustering by fast search and find of density peaks)的聚类是一种新颖的算法,它通过找到密度峰来有效地发现聚类的中心。DPC算法的精度取决于对给定数据集的密度的精确估计以及对截止距离dc(cutoff distan...快速搜索和找到密度峰DPC(clustering by fast search and find of density peaks)的聚类是一种新颖的算法,它通过找到密度峰来有效地发现聚类的中心。DPC算法的精度取决于对给定数据集的密度的精确估计以及对截止距离dc(cutoff distance)的选择。dc主要是用于计算每个数据点的密度和识别集群中的边界点,而DPC算法中dc的估计值却主要取决于主观经验值。提出一种基于核密度估计的DPC方法(KDE-DPC)来确定最合适的dc值。该方法通过引用一种新的Solve-the-Equation方法进行窗宽优化,根据不同数据集的概率分布,计算出最适合的dc。标准聚类基准数据集的实验结果证实了所提出的方法优越于DPC算法以及经典的K-means算法、DBSCAN算法和AP算法。展开更多
文摘该文针对雷达目标高分辨距离像(High-Resolution Range Profile,HRRP)识别中距离单元回波幅值统计建模所面临的概率密度模型选择问题,提出一种基于半参数化概率密度估计的雷达目标识别方法。半参数化概率密度估计从参数化概率密度估计出发,有效利用了高分辨距离像各距离单元幅值近似服从Gamma分布的经验知识,并且通过非参数化修正因子对Gamma模型进行修正,达到参数化方法和非参数化方法优缺互补的目的。基于5种飞机模型高分辨距离像数据的仿真实验证明了该文方法的有效性。
文摘针对欠定盲源分离中混合矩阵估计精度不佳的问题,本文提出了一种结合带噪声的基于密度的空间聚类(combining density-based spatial clustering of application with noise,DBSCAN)和概率密度估计的混合矩阵估计算法。首先,通过向量转换方式获得单声源时频点检测准则,并基于此准则从混合信号中检测出单声源点。其次,利用基于密度的空间聚类算法对单声源点进行聚类,由此估计出声源个数以及各类别所属的单声源点。再次,利用概率密度估计获得各类别的聚类中心,并构成混合矩阵。所提混合矩阵估计方法不需要提前设定声源个数,并且避免了由于数据分布不均所造成的聚类效果差的问题。最后,采用压缩感知技术实现源信号恢复,从而从混合信号中分离出各个声源信号。实验结果表明,本文所提的混合矩阵估计方法在声源个数未知的情况下,能够准确估计出混合矩阵;并且分离出的信号具有较高的质量。
文摘现有的距离度量学习算法都是假设训练数据和测试数据服从相同的分布,但是该假设在实际中不一定成立。当训练数据和测试数据的分布不同时,利用训练数据学习得到的度量函数可能难以适用于测试数据。针对上述问题,本文在NCA(Neighbourhood Components Analysis)度量学习方法的基础上,通过引入概率密度比值对目标函数加权,提出了一种采用概率密度比值估计的距离度量学习方法(Distance metric learning with ProbabilityDensity Ratio Estimation,DML-PDR)。在UCI数据集和Corel图像库上的KNN分类实验表明,新方法克服了传统度量学习方法的不一致问题,提高了分类的准确率。
文摘快速搜索和找到密度峰DPC(clustering by fast search and find of density peaks)的聚类是一种新颖的算法,它通过找到密度峰来有效地发现聚类的中心。DPC算法的精度取决于对给定数据集的密度的精确估计以及对截止距离dc(cutoff distance)的选择。dc主要是用于计算每个数据点的密度和识别集群中的边界点,而DPC算法中dc的估计值却主要取决于主观经验值。提出一种基于核密度估计的DPC方法(KDE-DPC)来确定最合适的dc值。该方法通过引用一种新的Solve-the-Equation方法进行窗宽优化,根据不同数据集的概率分布,计算出最适合的dc。标准聚类基准数据集的实验结果证实了所提出的方法优越于DPC算法以及经典的K-means算法、DBSCAN算法和AP算法。