期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于两种GMM-UBM多维概率输出的SVM语音情感识别 被引量:2
1
作者 黄永明 章国宝 +1 位作者 董飞 达飞鹏 《计算机应用研究》 CSCD 北大核心 2011年第1期98-101,共4页
针对GMM应用于情感识别时区分能力较弱的缺点,提出了一种将GMM与SVM有效结合的算法:基于GMM-UBM多维概率输出的SVM语音情感识别方法。该方法将GMM-UBM模型对一条语音的情感特征参数的两种多维概率输出(与特征向量同维、与GMM阶数同维)作... 针对GMM应用于情感识别时区分能力较弱的缺点,提出了一种将GMM与SVM有效结合的算法:基于GMM-UBM多维概率输出的SVM语音情感识别方法。该方法将GMM-UBM模型对一条语音的情感特征参数的两种多维概率输出(与特征向量同维、与GMM阶数同维)作为SVM分类器的特征参数,既利用了GMM表征数据本身统计特性的能力,又保留了SVM判决能力强的特点。在柏林情感语音库与汉语情感语料库上进行的实验结果表明,该方法在语音情感识别上的平均识别率较标准GMM方法提高1.7%~3.7%。 展开更多
关键词 语音情感识别 特征向量同维GMM—UBM多维概率输出 GMM阶数同维GMM—UBM多维概率输出 支持向量机(SVM)
在线阅读 下载PDF
一种卷积神经网络集成的多样性度量方法 被引量:1
2
作者 汤礼颖 贺利乐 +1 位作者 何林 屈东东 《智能系统学报》 CSCD 北大核心 2021年第6期1030-1038,共9页
分类器模型之间的多样性是分类器集成的一个重要性能指标。目前大多数多样性度量方法都是基于基分类器模型的0/1输出结果(即Oracle输出)进行计算,针对卷积神经网络的概率向量输出结果,仍需要将其转化为Oracle输出方式进行度量,这种方式... 分类器模型之间的多样性是分类器集成的一个重要性能指标。目前大多数多样性度量方法都是基于基分类器模型的0/1输出结果(即Oracle输出)进行计算,针对卷积神经网络的概率向量输出结果,仍需要将其转化为Oracle输出方式进行度量,这种方式未能充分利用卷积神经网络输出的概率向量所包含的丰富信息。针对此问题,利用多分类卷积神经网络模型的输出特性,提出了一种基于卷积神经网络的概率向量输出方式的集成多样性度量方法,建立多个不同结构的卷积神经网络基模型并在CIFAR-10和CIFAR-100数据集上进行实验。实验结果表明,与双错度量、不一致性度量和Q统计多样性度量方法相比,所提出的方法能够更好地体现模型之间的多样性,为模型选择集成提供更好的指导。 展开更多
关键词 卷积神经网络 集成学习 多样性度量 机器学习 分类器集成 概率向量输出 Oracle输出 基模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部