期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
电能质量扰动的专家概率分类器模型 被引量:6
1
作者 王志群 朱守真 周双喜 《电力系统自动化》 EI CSCD 北大核心 2004年第8期45-49,56,共6页
电力系统以及部分用户均安装有监测装置,收集了大量的扰动数据,因此有必要研究出实用简单的、自动的扰动分类器,从而为进一步研究奠定基础。提出了电能质量扰动的专家概率分类器模型,用于常见电能质量扰动的分类。概率分类器基于数理统... 电力系统以及部分用户均安装有监测装置,收集了大量的扰动数据,因此有必要研究出实用简单的、自动的扰动分类器,从而为进一步研究奠定基础。提出了电能质量扰动的专家概率分类器模型,用于常见电能质量扰动的分类。概率分类器基于数理统计规律,概念清楚、运算简单,引入专家反馈环节可以提高分类的准确性、鲁棒性,使得分类器具备一定的自适应能力。根据同一监测地点检测到的电能质量扰动样本,构建并测试了该分类器的可行性及性能,结果令人满意。 展开更多
关键词 电能质量扰动分类 概率分类器 专家反馈
在线阅读 下载PDF
基于Softmax概率分类器的数据驱动空间负荷预测 被引量:24
2
作者 郑伟民 叶承晋 +3 位作者 张曼颖 王蕾 孙可 丁一 《电力系统自动化》 EI CSCD 北大核心 2019年第9期117-124,共8页
提出了一种数据驱动空间负荷预测方法。将网格化体系下的功能地块作为空间负荷预测的基本单元,并且通过多维指标体系进行属性描述。基于大量调研数据,通过数据挖掘方法对不同类型地块的空间负荷密度分布规律和负荷曲线典型形态进行提取... 提出了一种数据驱动空间负荷预测方法。将网格化体系下的功能地块作为空间负荷预测的基本单元,并且通过多维指标体系进行属性描述。基于大量调研数据,通过数据挖掘方法对不同类型地块的空间负荷密度分布规律和负荷曲线典型形态进行提取。建立Softmax多元概率分类模型对未知地块的负荷水平类型进行匹配。自下而上对相邻地块负荷预测结果进行时域叠加,得到更大区域的预测信息,包括其负荷量和预测负荷曲线。算例仿真结果表明提出的空间负荷预测方法在预测精度上有一定提升。 展开更多
关键词 空间负荷预测 数据挖掘 地块 Softmax概率分类器 负荷曲线
在线阅读 下载PDF
基于多目标演化算法和改进概率分类的重尾时间序列预测 被引量:8
3
作者 邹小云 林文学 《计算机应用与软件》 北大核心 2020年第12期273-279,共7页
金融、通信和气象等领域中高频时间序列的边际分布均为重尾分布,而传统时间序列预测算法大多将数据流考虑为正态分布,导致传统算法无法适用于重尾分布的时间序列。针对这种情况,提出一种基于演化算法和改进概率分类器的重尾时间序列预... 金融、通信和气象等领域中高频时间序列的边际分布均为重尾分布,而传统时间序列预测算法大多将数据流考虑为正态分布,导致传统算法无法适用于重尾分布的时间序列。针对这种情况,提出一种基于演化算法和改进概率分类器的重尾时间序列预测算法。将预测提前量和预测准确率作为两个优化目标,利用演化算法对两个目标进行独立优化。对高斯过程分类进行改进,使其支持重尾时间序列的分类问题,并且优化了时间效率。实验结果表明,该算法有效地提高了时间序列的预测准确率。 展开更多
关键词 多目标优化 风险预测 重尾分布 时间序列分类 概率分类器
在线阅读 下载PDF
基于FCM-PNN分类器的说话人识别
4
作者 程剑锋 徐俊艳 《计算机工程与应用》 CSCD 北大核心 2004年第10期65-67,共3页
说话人识别的本质就是模式分类。传统分类器算法中参数模型方法的主要缺点是预先假定的概率分布函数形式不一定符合待分类的数据。非参数模型方法,如PNN分类器,可以有效地克服参数模型的缺点,但其巨大的内存开销与低的分类速度使得PNN... 说话人识别的本质就是模式分类。传统分类器算法中参数模型方法的主要缺点是预先假定的概率分布函数形式不一定符合待分类的数据。非参数模型方法,如PNN分类器,可以有效地克服参数模型的缺点,但其巨大的内存开销与低的分类速度使得PNN作为大量和高维的数据样本分类几乎不可行。FCM虽具有良好的模糊聚类能力,但无法直接给出概率分类结果。该文提出的FCM-PNN分类器,在FCM聚类的基础上,以贝叶斯置信度为基础,利用PNN进行概率分类。它结合了FCM聚类和PNN概率分类的优势,同时克服了传统参数模型分类和FCM聚类的局限性。实验结果证实了FCM-PNN分类器具有分类精度高、速度快及揭示细节的能力。 展开更多
关键词 概率神经网络 说话人识别 FCM-PNN概率分类器 模糊C-均值聚类
在线阅读 下载PDF
基于频谱残差视觉显著计算的高分辨SAR图像舰船检测算法 被引量:12
5
作者 熊伟 徐永力 +2 位作者 姚力波 崔亚奇 李岳峰 《电光与控制》 北大核心 2018年第4期7-11,49,共6页
分析了高分辨率SAR图像中海洋背景和舰船目标的特点,针对高分辨率SAR图像提出了一种两阶段舰船目标快速检测算法:第一阶段采用改进的频谱残差视觉显著计算模型快速获取视觉的感兴趣区域;第二阶段检测阶段,结合贝叶斯理论二元假设检验的... 分析了高分辨率SAR图像中海洋背景和舰船目标的特点,针对高分辨率SAR图像提出了一种两阶段舰船目标快速检测算法:第一阶段采用改进的频谱残差视觉显著计算模型快速获取视觉的感兴趣区域;第二阶段检测阶段,结合贝叶斯理论二元假设检验的思想,设计了一个局部最大后验概率分类器进行像素分类,经参数估计、判决准则完成显著区域内像素二分类以实现目标检测。实验采用典型的高分辨率SAR卫星Terra-SAR-X卫星数据进行仿真实验,结果表明所提算法具有良好的检测性能,也更加符合实际高分辨率图像舰船目标检测的应用需求。通过进一步实验与以往检测算法的对比得出结论,高分辨率SAR图像舰船目标检测方法在能够改善由斑点噪声和不均匀的海杂波背景对检测结果带来虚警的同时,检测速度也提高了25%~50%。 展开更多
关键词 合成孔径雷达图像 舰船目标检测 频谱残差模型 视觉注意机制 局部最大后验概率分类器
在线阅读 下载PDF
基于局部非负稀疏编码的掌纹识别方法 被引量:2
6
作者 尚丽 苏品刚 杜吉祥 《计算机应用》 CSCD 北大核心 2011年第6期1609-1612,共4页
为了更有效地提取出图像的局部特征,在传统的非负稀疏编码(Hoyer-NNSC)算法的基础上,提出了一种新的具有稀疏度约束的局部NNSC(LNNSC)算法。该算法考虑了特征基向量的稀疏度约束和特征的最大化代表性,能够得到强化的图像局部特征;同时... 为了更有效地提取出图像的局部特征,在传统的非负稀疏编码(Hoyer-NNSC)算法的基础上,提出了一种新的具有稀疏度约束的局部NNSC(LNNSC)算法。该算法考虑了特征基向量的稀疏度约束和特征的最大化代表性,能够得到强化的图像局部特征;同时利用拉普拉斯密度模型作为特征系数的稀疏惩罚函数,保证了图像结构的稀疏性。在特征提取的基础上,进一步利用径向基概率神经网络(RBPNN)分类器,实现了掌纹的自动识别。仿真实验结果表明,与基于非负矩阵分解(NMF)、局部非负矩阵分解(LNMF)和Hoyer-NNSC的掌纹识别方法相比,该算法在掌纹识别研究中有较高的可行性和实用性。 展开更多
关键词 非负稀疏编码 局部特征提取 掌纹识别 径向基概率神经网络分类器
在线阅读 下载PDF
应用非负矩阵分解和RBPNN模型的掌纹识别方法 被引量:3
7
作者 尚丽 崔鸣 杜吉祥 《计算机工程与应用》 CSCD 2012年第4期199-203,共5页
提出一种基于非负矩阵分解(NMF)和径向基概率神经网络的掌纹识别方法。NFM是一种有效的图像局部特征提取算法,用于图像分类时能得到较高的识别率。考虑PolyU掌纹图像数据库,应用NMF、局部NMF(LNMF)、稀疏NMF(SNMF)和具有稀疏度约束的NMF... 提出一种基于非负矩阵分解(NMF)和径向基概率神经网络的掌纹识别方法。NFM是一种有效的图像局部特征提取算法,用于图像分类时能得到较高的识别率。考虑PolyU掌纹图像数据库,应用NMF、局部NMF(LNMF)、稀疏NMF(SNMF)和具有稀疏度约束的NMF(NMFSC)算法分别对掌纹图像进行特征提取,并对提取到的局部特征基图像进行分析对比;在特征提取的基础上,应用径向基概率神经网络(RBPNN)模型对掌纹特征进行分类,分类结果表明了RBPNN模型对掌纹特征具有较好的识别能力。实验对比结果证明了基于RBPNN的NMF掌纹识别方法在掌纹识别中的有效性,具有一定的理论研究意义和实用性。 展开更多
关键词 非负矩阵分解 局部特征提取 特征基图像 掌纹识别 径向基概率神经网络(RBPNN)分类器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部