针对回转支承故障特征微弱以及难以提取的特点,提出一种基于概率主成分分析(probabilistic principal component analysis,PPCA)的多领域特征提取方法。该方法从振动信号的时域和时频域中提取出多个能够表征回转支承运行状态的特征向量...针对回转支承故障特征微弱以及难以提取的特点,提出一种基于概率主成分分析(probabilistic principal component analysis,PPCA)的多领域特征提取方法。该方法从振动信号的时域和时频域中提取出多个能够表征回转支承运行状态的特征向量,并将其组成高维特征集。采用PPCA从高维特征集中提取出最能够反映回转支承寿命状态信息的特征量,将其输入粒子群算法优化的支持向量机中进行寿命状态的识别。通过回转支承全寿命实验证明,基于PPCA的特征提取方法优于传统的主成分分析(principal component analysis,PCA),其相应的寿命状态识别精度提高了约8%,并且多领域、多变量的特征更能全面反映回转支承的性能退化趋势。与传统的特征提取方法相比,所提方法能够更全面有效地反映复杂恶劣环境下回转支承的故障信息,因此可以用于回转支承的健康监测领域。展开更多
针对实际工程中滚动轴承微弱故障信号特征难以提取的问题,提出了一种新的自适应概率主成分分析(Adaptive Probabilistic Principal Component Analysis,APPCA)的轴承故障特征增强方法。概率主成分分析(Probabilistic Principal Componen...针对实际工程中滚动轴承微弱故障信号特征难以提取的问题,提出了一种新的自适应概率主成分分析(Adaptive Probabilistic Principal Component Analysis,APPCA)的轴承故障特征增强方法。概率主成分分析(Probabilistic Principal Component Analysis,PPCA)能够提取信号的主要故障特征,去除背景噪声干扰,但结果易受到主成分数与原始变量维数选择的影响。为了自适应实现最佳分析结果,利用粒子群算法多参数寻优特性,根据最大峭度准则确定影响PPCA的最佳影响参数组合。原信号通过APPCA方法处理后,背景噪声得到有效抑制,故障特征得到增强,最后通过包络分析识别故障特征。仿真和实验结果证明了该方法的有效性。展开更多
基于前列腺癌检测中获取的表面增强激光解吸/离子化飞行时间质谱(SELDI-TOF-MS)数据,提出一种概率主成分分析(PPCA)联合支持向量机(SVM)的分类方法。对临床322例血清样本的质谱数据进行特征提取,以随机选取训练样本集(225例)构造SVM判...基于前列腺癌检测中获取的表面增强激光解吸/离子化飞行时间质谱(SELDI-TOF-MS)数据,提出一种概率主成分分析(PPCA)联合支持向量机(SVM)的分类方法。对临床322例血清样本的质谱数据进行特征提取,以随机选取训练样本集(225例)构造SVM判别模型,对剩余样本集(97例)进行测试。采用均方根误差、识别率与预测率指标,将所构造的PPCA-SVM模型分别与偏最小二乘(Partial least squares,PLS)和PCA-SVM模型进行比较,发现PLS模型的识别率和预测率分别为90.92%和76.38%,PCA-SVM模型分别为99.23%和84.63%,而PPCA-SVM模型分别为99.01%和90.41%。因此SELDI-TOF-MS技术结合PPCA-SVM在样品分类中具有准确、重复性好等优点,为前列腺癌早期诊断提供了一种新方法。展开更多
文摘针对实际工程中滚动轴承微弱故障信号特征难以提取的问题,提出了一种新的自适应概率主成分分析(Adaptive Probabilistic Principal Component Analysis,APPCA)的轴承故障特征增强方法。概率主成分分析(Probabilistic Principal Component Analysis,PPCA)能够提取信号的主要故障特征,去除背景噪声干扰,但结果易受到主成分数与原始变量维数选择的影响。为了自适应实现最佳分析结果,利用粒子群算法多参数寻优特性,根据最大峭度准则确定影响PPCA的最佳影响参数组合。原信号通过APPCA方法处理后,背景噪声得到有效抑制,故障特征得到增强,最后通过包络分析识别故障特征。仿真和实验结果证明了该方法的有效性。
文摘基于前列腺癌检测中获取的表面增强激光解吸/离子化飞行时间质谱(SELDI-TOF-MS)数据,提出一种概率主成分分析(PPCA)联合支持向量机(SVM)的分类方法。对临床322例血清样本的质谱数据进行特征提取,以随机选取训练样本集(225例)构造SVM判别模型,对剩余样本集(97例)进行测试。采用均方根误差、识别率与预测率指标,将所构造的PPCA-SVM模型分别与偏最小二乘(Partial least squares,PLS)和PCA-SVM模型进行比较,发现PLS模型的识别率和预测率分别为90.92%和76.38%,PCA-SVM模型分别为99.23%和84.63%,而PPCA-SVM模型分别为99.01%和90.41%。因此SELDI-TOF-MS技术结合PPCA-SVM在样品分类中具有准确、重复性好等优点,为前列腺癌早期诊断提供了一种新方法。