针对回转支承故障特征微弱以及难以提取的特点,提出一种基于概率主成分分析(probabilistic principal component analysis,PPCA)的多领域特征提取方法。该方法从振动信号的时域和时频域中提取出多个能够表征回转支承运行状态的特征向量...针对回转支承故障特征微弱以及难以提取的特点,提出一种基于概率主成分分析(probabilistic principal component analysis,PPCA)的多领域特征提取方法。该方法从振动信号的时域和时频域中提取出多个能够表征回转支承运行状态的特征向量,并将其组成高维特征集。采用PPCA从高维特征集中提取出最能够反映回转支承寿命状态信息的特征量,将其输入粒子群算法优化的支持向量机中进行寿命状态的识别。通过回转支承全寿命实验证明,基于PPCA的特征提取方法优于传统的主成分分析(principal component analysis,PCA),其相应的寿命状态识别精度提高了约8%,并且多领域、多变量的特征更能全面反映回转支承的性能退化趋势。与传统的特征提取方法相比,所提方法能够更全面有效地反映复杂恶劣环境下回转支承的故障信息,因此可以用于回转支承的健康监测领域。展开更多
针对实际工程中滚动轴承微弱故障信号特征难以提取的问题,提出了一种新的自适应概率主成分分析(Adaptive Probabilistic Principal Component Analysis,APPCA)的轴承故障特征增强方法。概率主成分分析(Probabilistic Principal Componen...针对实际工程中滚动轴承微弱故障信号特征难以提取的问题,提出了一种新的自适应概率主成分分析(Adaptive Probabilistic Principal Component Analysis,APPCA)的轴承故障特征增强方法。概率主成分分析(Probabilistic Principal Component Analysis,PPCA)能够提取信号的主要故障特征,去除背景噪声干扰,但结果易受到主成分数与原始变量维数选择的影响。为了自适应实现最佳分析结果,利用粒子群算法多参数寻优特性,根据最大峭度准则确定影响PPCA的最佳影响参数组合。原信号通过APPCA方法处理后,背景噪声得到有效抑制,故障特征得到增强,最后通过包络分析识别故障特征。仿真和实验结果证明了该方法的有效性。展开更多
基于前列腺癌检测中获取的表面增强激光解吸/离子化飞行时间质谱(SELDI-TOF-MS)数据,提出一种概率主成分分析(PPCA)联合支持向量机(SVM)的分类方法。对临床322例血清样本的质谱数据进行特征提取,以随机选取训练样本集(225例)构造SVM判...基于前列腺癌检测中获取的表面增强激光解吸/离子化飞行时间质谱(SELDI-TOF-MS)数据,提出一种概率主成分分析(PPCA)联合支持向量机(SVM)的分类方法。对临床322例血清样本的质谱数据进行特征提取,以随机选取训练样本集(225例)构造SVM判别模型,对剩余样本集(97例)进行测试。采用均方根误差、识别率与预测率指标,将所构造的PPCA-SVM模型分别与偏最小二乘(Partial least squares,PLS)和PCA-SVM模型进行比较,发现PLS模型的识别率和预测率分别为90.92%和76.38%,PCA-SVM模型分别为99.23%和84.63%,而PPCA-SVM模型分别为99.01%和90.41%。因此SELDI-TOF-MS技术结合PPCA-SVM在样品分类中具有准确、重复性好等优点,为前列腺癌早期诊断提供了一种新方法。展开更多
针对低信噪比条件下微多普勒调制易被噪声污染的问题,提出了一种基于复数域概率主成分分析(Complex Probabilistic Principal Component Analysis,CPPCA)模型的噪声稳健分类算法来实现低分辨雷达体制下三类飞机目标(喷气式飞机、螺旋桨...针对低信噪比条件下微多普勒调制易被噪声污染的问题,提出了一种基于复数域概率主成分分析(Complex Probabilistic Principal Component Analysis,CPPCA)模型的噪声稳健分类算法来实现低分辨雷达体制下三类飞机目标(喷气式飞机、螺旋桨飞机和直升机)的分类.算法依据三类飞机多普勒谱调制的差异,提出两维反映这种差异的微动特征.为了提高微动特征在低信噪比条件下的分类性能,利用CPPCA模型对雷达复回波信号建模并结合Akaike信息量准则(Akaike’s Information Criterion,AIC)来自适应地确定回波中主成分的个数从而实现对数据的噪声抑制.基于实测数据的实验结果表明,该算法在较低信噪比条件下能够获得较好的噪声抑制和分类性能.展开更多
高信噪比情况下,利用概率主成分分析(PPCA,probabilistic principal component analysis)模型识别雷达高分辨距离像(HRRP,high resolution range profile)取得了较高的识别率。但在实际工作环境中,测试阶段获取的HRRP常为低信噪比样本,...高信噪比情况下,利用概率主成分分析(PPCA,probabilistic principal component analysis)模型识别雷达高分辨距离像(HRRP,high resolution range profile)取得了较高的识别率。但在实际工作环境中,测试阶段获取的HRRP常为低信噪比样本,由此造成的模型失配问题极大影响了识别性能。为此文章利用不同噪声来源造成的模型失配先验信息,在模型空间针对不同信噪比的测试样本补偿PPCA模型参数,以达到稳健识别的目的。另一方面,利用2种方法通过直接估计测试样本的噪声功率省去最优化计算的步骤,避免了求解最优补偿参数时需要大量计算的问题,提高了识别效率。最后,利用最大后验概率确定目标所属类别,证明了2种方法在信噪比低于20 d B时的可行性。展开更多
结合基于概率主成分分析(Probabilistic Principal Component Analysis,PPCA)模型的高分辨率一维距离像(High Resolution Range Profiles,HRRP)目标识别流程,出于辅助进行研究、降低开展实验时数据准备与平台搭建复杂度的功能需求,利用M...结合基于概率主成分分析(Probabilistic Principal Component Analysis,PPCA)模型的高分辨率一维距离像(High Resolution Range Profiles,HRRP)目标识别流程,出于辅助进行研究、降低开展实验时数据准备与平台搭建复杂度的功能需求,利用Matlab appdesigner设计完成了一套综合仿真平台。该平台能够实现对单极化以及全极化复数域HRRP的数据仿真,并且能够进行目标分类识别和识别性能评估,为后续研究的开展打下了坚实的基础。展开更多
文摘针对实际工程中滚动轴承微弱故障信号特征难以提取的问题,提出了一种新的自适应概率主成分分析(Adaptive Probabilistic Principal Component Analysis,APPCA)的轴承故障特征增强方法。概率主成分分析(Probabilistic Principal Component Analysis,PPCA)能够提取信号的主要故障特征,去除背景噪声干扰,但结果易受到主成分数与原始变量维数选择的影响。为了自适应实现最佳分析结果,利用粒子群算法多参数寻优特性,根据最大峭度准则确定影响PPCA的最佳影响参数组合。原信号通过APPCA方法处理后,背景噪声得到有效抑制,故障特征得到增强,最后通过包络分析识别故障特征。仿真和实验结果证明了该方法的有效性。
文摘基于前列腺癌检测中获取的表面增强激光解吸/离子化飞行时间质谱(SELDI-TOF-MS)数据,提出一种概率主成分分析(PPCA)联合支持向量机(SVM)的分类方法。对临床322例血清样本的质谱数据进行特征提取,以随机选取训练样本集(225例)构造SVM判别模型,对剩余样本集(97例)进行测试。采用均方根误差、识别率与预测率指标,将所构造的PPCA-SVM模型分别与偏最小二乘(Partial least squares,PLS)和PCA-SVM模型进行比较,发现PLS模型的识别率和预测率分别为90.92%和76.38%,PCA-SVM模型分别为99.23%和84.63%,而PPCA-SVM模型分别为99.01%和90.41%。因此SELDI-TOF-MS技术结合PPCA-SVM在样品分类中具有准确、重复性好等优点,为前列腺癌早期诊断提供了一种新方法。
文摘针对低信噪比条件下微多普勒调制易被噪声污染的问题,提出了一种基于复数域概率主成分分析(Complex Probabilistic Principal Component Analysis,CPPCA)模型的噪声稳健分类算法来实现低分辨雷达体制下三类飞机目标(喷气式飞机、螺旋桨飞机和直升机)的分类.算法依据三类飞机多普勒谱调制的差异,提出两维反映这种差异的微动特征.为了提高微动特征在低信噪比条件下的分类性能,利用CPPCA模型对雷达复回波信号建模并结合Akaike信息量准则(Akaike’s Information Criterion,AIC)来自适应地确定回波中主成分的个数从而实现对数据的噪声抑制.基于实测数据的实验结果表明,该算法在较低信噪比条件下能够获得较好的噪声抑制和分类性能.
文摘高信噪比情况下,利用概率主成分分析(PPCA,probabilistic principal component analysis)模型识别雷达高分辨距离像(HRRP,high resolution range profile)取得了较高的识别率。但在实际工作环境中,测试阶段获取的HRRP常为低信噪比样本,由此造成的模型失配问题极大影响了识别性能。为此文章利用不同噪声来源造成的模型失配先验信息,在模型空间针对不同信噪比的测试样本补偿PPCA模型参数,以达到稳健识别的目的。另一方面,利用2种方法通过直接估计测试样本的噪声功率省去最优化计算的步骤,避免了求解最优补偿参数时需要大量计算的问题,提高了识别效率。最后,利用最大后验概率确定目标所属类别,证明了2种方法在信噪比低于20 d B时的可行性。
文摘结合基于概率主成分分析(Probabilistic Principal Component Analysis,PPCA)模型的高分辨率一维距离像(High Resolution Range Profiles,HRRP)目标识别流程,出于辅助进行研究、降低开展实验时数据准备与平台搭建复杂度的功能需求,利用Matlab appdesigner设计完成了一套综合仿真平台。该平台能够实现对单极化以及全极化复数域HRRP的数据仿真,并且能够进行目标分类识别和识别性能评估,为后续研究的开展打下了坚实的基础。