在基于语义的查询扩展中,为了找到描述查询需求语义的相关概念,词语.概念相关度的计算是语义查询扩展中的关键一步.针对词语.概念相关度的计算,提出一种K2CM(keyword to concept method)方法.K2CM方法从词语.文档.概念所属程度和词语....在基于语义的查询扩展中,为了找到描述查询需求语义的相关概念,词语.概念相关度的计算是语义查询扩展中的关键一步.针对词语.概念相关度的计算,提出一种K2CM(keyword to concept method)方法.K2CM方法从词语.文档.概念所属程度和词语.概念共现程度两个方面来计算词语.概念相关度问语.文档.概念所属程度来源于标注的文档集中词语对概念的所属关系,即词语出现在若干文档中而文档被标注了若干概念.词语.概念共现程度是在词语概念对的共现性基础上增加了词语概念对的文本距离和文档分布特征的考虑.3种不同类型数据集上的语义检索实验结果表明,与传统方法相比,基于K2CM的语义查询扩展可以提高查询效果.展开更多
为了提高文本标记和分类的效率,提出了基于概念语义相关性和LDA的文本自动标记算法(Text Mark Label,TML),用以代替人工标记的文本分类标记.该算法在概念语义相关性计算的基础上,使用LDA(Latent Dirichlet Allocation)提取文本的主题表...为了提高文本标记和分类的效率,提出了基于概念语义相关性和LDA的文本自动标记算法(Text Mark Label,TML),用以代替人工标记的文本分类标记.该算法在概念语义相关性计算的基础上,使用LDA(Latent Dirichlet Allocation)提取文本的主题表示,通过计算文本主题从属于各分类目录的期望从而实现文本自动标记.为验证TML算法的效果,在标准文本分类数据集上使用文本分类器进行有监督文本分类实验.为对比数据集和分类器对分类效果的影响,在3个数据集(WebKB、Reuters-21578、20-News Group)上分别使用3种不同的分类器(Rocchio、KNN、SVM)进行实验.实验结果表明:TML算法有效地提高了文本分类效率及文本标记效率.展开更多
文摘在基于语义的查询扩展中,为了找到描述查询需求语义的相关概念,词语.概念相关度的计算是语义查询扩展中的关键一步.针对词语.概念相关度的计算,提出一种K2CM(keyword to concept method)方法.K2CM方法从词语.文档.概念所属程度和词语.概念共现程度两个方面来计算词语.概念相关度问语.文档.概念所属程度来源于标注的文档集中词语对概念的所属关系,即词语出现在若干文档中而文档被标注了若干概念.词语.概念共现程度是在词语概念对的共现性基础上增加了词语概念对的文本距离和文档分布特征的考虑.3种不同类型数据集上的语义检索实验结果表明,与传统方法相比,基于K2CM的语义查询扩展可以提高查询效果.