期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向智能变胞车的改进YOLOv5楼梯目标识别算法
1
作者 刘俊 张成 阮小栋 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第7期879-886,899,共9页
针对智能变胞车在室内楼梯环境下自主攀爬过程中的楼梯识别问题,文章提出一种基于改进YOLOv5的楼梯识别算法。为满足算法模型的实时性要求,利用轻量级网络EfficientNetV2替换YOLOv5算法的主干网络;使用GSConv模块和VoV-GSCSP模块替换原... 针对智能变胞车在室内楼梯环境下自主攀爬过程中的楼梯识别问题,文章提出一种基于改进YOLOv5的楼梯识别算法。为满足算法模型的实时性要求,利用轻量级网络EfficientNetV2替换YOLOv5算法的主干网络;使用GSConv模块和VoV-GSCSP模块替换原颈部网络中的Conv模块和CSP模块,在增强目标特征响应的基础上进一步减少计算成本;为弥补算法模型简化带来的精度损失,在颈部网络上添加坐标注意力机制,通过强化目标关注以提升在复杂场景下的目标识别效果;最后将改进的算法模型应用于嵌入式平台进行实验检测。实验结果表明:改进后的算法模型平均检测精度为91.99%,模型大小仅为3.1 MB,相较于其他目标检测算法具有明显的优越性。文章所提算法能够有效地对楼梯进行实时、准确的检测识别,为后续变胞车自主越障奠定了一定的理论基础。 展开更多
关键词 智能变胞车 楼梯目标检测 YOLOv5算法 网络轻量化 注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部