SPAD(Soil and plant analyzer development)值能够反映作物叶片叶绿素含量,是表征作物健康状态的重要指标。采用无人机搭载可见光和多光谱相机同步获取冬小麦可见光和多光谱影像,同时获取冬小麦叶片SPAD值,探究了可见光和多光谱植被指...SPAD(Soil and plant analyzer development)值能够反映作物叶片叶绿素含量,是表征作物健康状态的重要指标。采用无人机搭载可见光和多光谱相机同步获取冬小麦可见光和多光谱影像,同时获取冬小麦叶片SPAD值,探究了可见光和多光谱植被指数与SPAD值的关系,将可见光植被指数与多光谱植被指数相结合进行SPAD值估算,利用逐步回归和随机森林回归方法估算SPAD值,并将估算结果进行对比,筛选出冬小麦叶片SPAD值的最优估算模型。结果表明,SPAD值与可见光植被指数(IKAW和RBRI)、多光谱植被指数(GNDVI、CI、GMSR和GOSAVI)具有较好的相关性,与可见光植被指数(CIVE)和多光谱植被指数(GNDVI)的相结合指数具有较好的相关性,其估算模型的R^(2)为0.89,模型验证的RMSE为2.55,nRMSE为6.21%。研究表明,可见光植被指数与多光谱植被指数相结合指数逐步回归和随机森林回归模型估算SPAD值的精度高于仅用可见光植被指数或多光谱植被指数,采用逐步回归的估算模型R^(2)为0.91,模型验证R^(2)、RMSE和nRMSE分别为0.89、2.32和5.64%,采用随机森林回归的估算模型R^(2)为0.90,模型验证R^(2)、RMSE和nRMSE分别为0.88、2.51和6.12%。展开更多
盐生植物对于维持干旱区绿洲生态系统平衡起着核心作用。该文以渭干河-库车河三角洲绿洲盐漠带典型盐生植物为研究对象,利用Field Spec Pro FR便携式地物波谱仪,对2010年10月盐生植物的野外光谱数据进行采集并取相应土样。首先,采用光...盐生植物对于维持干旱区绿洲生态系统平衡起着核心作用。该文以渭干河-库车河三角洲绿洲盐漠带典型盐生植物为研究对象,利用Field Spec Pro FR便携式地物波谱仪,对2010年10月盐生植物的野外光谱数据进行采集并取相应土样。首先,采用光谱学分析方法分析光谱特征变化,并对土壤理化特性(含盐量、TDS、电导率、pH值)进行室内测定分析,获得盐生植物光谱特征数据和土壤理化特性数据。其次,利用实测光谱数据对盐生植物高光谱植被指数NDVI705、VOG1、ARI1和CRI1进行反演,用高光谱影像和TM影像分别对VOG1和NDVI705进行反演,并与土壤理化特性进行相关性分析。研究表明:高光谱植被指数NDVI705、VOG1、ARI1与土壤理化特性之间相关性均较低(0.266<R<0.449),但CRI1与含盐量、TDS的相关性较高(R=0.668);用高光谱影像反演的VOG1与电导率的相关性较高(R=0.536),用TM影像反演的NDVI705与TDS相关性较高(R=0.695)。通过精度验证,发现高光谱反演数据(VOG1)比TM反演数据(NDVI705)精确,说明遥感数据空间分辨率的不同影响了反演植被光谱指数的精度。该研究不仅可为干旱地区盐生植物的遥感识别奠定基础,而且对维持绿洲生态系统稳定提供一定的科学依据。展开更多
文摘SPAD(Soil and plant analyzer development)值能够反映作物叶片叶绿素含量,是表征作物健康状态的重要指标。采用无人机搭载可见光和多光谱相机同步获取冬小麦可见光和多光谱影像,同时获取冬小麦叶片SPAD值,探究了可见光和多光谱植被指数与SPAD值的关系,将可见光植被指数与多光谱植被指数相结合进行SPAD值估算,利用逐步回归和随机森林回归方法估算SPAD值,并将估算结果进行对比,筛选出冬小麦叶片SPAD值的最优估算模型。结果表明,SPAD值与可见光植被指数(IKAW和RBRI)、多光谱植被指数(GNDVI、CI、GMSR和GOSAVI)具有较好的相关性,与可见光植被指数(CIVE)和多光谱植被指数(GNDVI)的相结合指数具有较好的相关性,其估算模型的R^(2)为0.89,模型验证的RMSE为2.55,nRMSE为6.21%。研究表明,可见光植被指数与多光谱植被指数相结合指数逐步回归和随机森林回归模型估算SPAD值的精度高于仅用可见光植被指数或多光谱植被指数,采用逐步回归的估算模型R^(2)为0.91,模型验证R^(2)、RMSE和nRMSE分别为0.89、2.32和5.64%,采用随机森林回归的估算模型R^(2)为0.90,模型验证R^(2)、RMSE和nRMSE分别为0.88、2.51和6.12%。
文摘盐生植物对于维持干旱区绿洲生态系统平衡起着核心作用。该文以渭干河-库车河三角洲绿洲盐漠带典型盐生植物为研究对象,利用Field Spec Pro FR便携式地物波谱仪,对2010年10月盐生植物的野外光谱数据进行采集并取相应土样。首先,采用光谱学分析方法分析光谱特征变化,并对土壤理化特性(含盐量、TDS、电导率、pH值)进行室内测定分析,获得盐生植物光谱特征数据和土壤理化特性数据。其次,利用实测光谱数据对盐生植物高光谱植被指数NDVI705、VOG1、ARI1和CRI1进行反演,用高光谱影像和TM影像分别对VOG1和NDVI705进行反演,并与土壤理化特性进行相关性分析。研究表明:高光谱植被指数NDVI705、VOG1、ARI1与土壤理化特性之间相关性均较低(0.266<R<0.449),但CRI1与含盐量、TDS的相关性较高(R=0.668);用高光谱影像反演的VOG1与电导率的相关性较高(R=0.536),用TM影像反演的NDVI705与TDS相关性较高(R=0.695)。通过精度验证,发现高光谱反演数据(VOG1)比TM反演数据(NDVI705)精确,说明遥感数据空间分辨率的不同影响了反演植被光谱指数的精度。该研究不仅可为干旱地区盐生植物的遥感识别奠定基础,而且对维持绿洲生态系统稳定提供一定的科学依据。