多维属性离散化能提升机器学习算法训练的速度与精度,目前的离散化算法性能较低且多是单属性离散,忽略了属性之间的潜在关联。基于此,提出了一种基于森林优化的粗糙集离散化算法(a discretization algorithm based on forest optimizati...多维属性离散化能提升机器学习算法训练的速度与精度,目前的离散化算法性能较低且多是单属性离散,忽略了属性之间的潜在关联。基于此,提出了一种基于森林优化的粗糙集离散化算法(a discretization algorithm based on forest optimization and rough set,FORDA)。该算法针对多维连续属性的离散化,依据变精度粗糙集理论,设计适宜值函数,进而构建森林寻优网络,迭代搜索最优断点子集。在UCI数据集上的实验结果表明,与当前主流的离散化算法相比,所提算法能避免局部最优,显著提升了SVM分类器的分类精度,其离散化性能更为优良,且具有一定的通用性,验证了算法的有效性。展开更多
森林优化算法是一种基于森林中树木播种思想的演化算法,其具有良好的特征空间搜索能力,且实现难度低。但该算法在森林整体的收敛速度和寻优能力上仍存在提升空间,而且对高维数据集的适应度较差。本文针对上述问题提出了基于重复度分析...森林优化算法是一种基于森林中树木播种思想的演化算法,其具有良好的特征空间搜索能力,且实现难度低。但该算法在森林整体的收敛速度和寻优能力上仍存在提升空间,而且对高维数据集的适应度较差。本文针对上述问题提出了基于重复度分析的森林优化特征选择算法(feature selection using forest optimization algorithm based on duplication analysis, DAFSFOA)。该算法提出了基于信息增益的自适应初始化策略、森林重复度分析机制、森林重启机制、候选最优树生成策略、综合考虑特征选择数量和分类正确率的适应度函数。实验结果表明,DAFSFOA在大部分数据集上达到了最高的分类准确率。同时,对于高维数据集SRBCT,在维度缩减率和分类准确率方面,DAFSFOA对比森林优化特征选择算法(feature selection using forest optimization algorithm,FSFOA)都有较大提升。DAFSFOA比FSFOA具有更强的特征空间探索能力,而且能够适应不同维度的数据集。展开更多
In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hy...In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hybrid predictive model named GWO-RF.This model combines the grey wolf optimization(GWO)algorithm with the random forest(RF)technique to predict the D_(80)value,a critical parameter in evaluating rock fragmentation quality.The study is conducted using a dataset from Sarcheshmeh Copper Mine,employing six different swarm sizes for the GWO-RF hybrid model construction.The GWO-RF model’s hyperparameters are systematically optimized within established bounds,and its performance is rigorously evaluated using multiple evaluation metrics.The results show that the GWO-RF hybrid model has higher predictive skills,exceeding traditional models in terms of accuracy.Furthermore,the interpretability of the GWO-RF model is enhanced through the utilization of SHapley Additive exPlanations(SHAP)values.The insights gained from this research contribute to optimizing blasting operations and rock fragmentation outcomes in the mining industry.展开更多
文摘多维属性离散化能提升机器学习算法训练的速度与精度,目前的离散化算法性能较低且多是单属性离散,忽略了属性之间的潜在关联。基于此,提出了一种基于森林优化的粗糙集离散化算法(a discretization algorithm based on forest optimization and rough set,FORDA)。该算法针对多维连续属性的离散化,依据变精度粗糙集理论,设计适宜值函数,进而构建森林寻优网络,迭代搜索最优断点子集。在UCI数据集上的实验结果表明,与当前主流的离散化算法相比,所提算法能避免局部最优,显著提升了SVM分类器的分类精度,其离散化性能更为优良,且具有一定的通用性,验证了算法的有效性。
文摘森林优化算法是一种基于森林中树木播种思想的演化算法,其具有良好的特征空间搜索能力,且实现难度低。但该算法在森林整体的收敛速度和寻优能力上仍存在提升空间,而且对高维数据集的适应度较差。本文针对上述问题提出了基于重复度分析的森林优化特征选择算法(feature selection using forest optimization algorithm based on duplication analysis, DAFSFOA)。该算法提出了基于信息增益的自适应初始化策略、森林重复度分析机制、森林重启机制、候选最优树生成策略、综合考虑特征选择数量和分类正确率的适应度函数。实验结果表明,DAFSFOA在大部分数据集上达到了最高的分类准确率。同时,对于高维数据集SRBCT,在维度缩减率和分类准确率方面,DAFSFOA对比森林优化特征选择算法(feature selection using forest optimization algorithm,FSFOA)都有较大提升。DAFSFOA比FSFOA具有更强的特征空间探索能力,而且能够适应不同维度的数据集。
基金Projects(42177164,52474121)supported by the National Science Foundation of ChinaProject(PBSKL2023A12)supported by the State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Blasting Engineering,China。
文摘In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hybrid predictive model named GWO-RF.This model combines the grey wolf optimization(GWO)algorithm with the random forest(RF)technique to predict the D_(80)value,a critical parameter in evaluating rock fragmentation quality.The study is conducted using a dataset from Sarcheshmeh Copper Mine,employing six different swarm sizes for the GWO-RF hybrid model construction.The GWO-RF model’s hyperparameters are systematically optimized within established bounds,and its performance is rigorously evaluated using multiple evaluation metrics.The results show that the GWO-RF hybrid model has higher predictive skills,exceeding traditional models in terms of accuracy.Furthermore,the interpretability of the GWO-RF model is enhanced through the utilization of SHapley Additive exPlanations(SHAP)values.The insights gained from this research contribute to optimizing blasting operations and rock fragmentation outcomes in the mining industry.