期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv5s的复杂环境下棉花顶芽识别 被引量:4
1
作者 席光泽 周建平 +2 位作者 许燕 彭炫 崔超 《中国农机化学报》 北大核心 2024年第12期275-280,共6页
针对在复杂环境下棉花顶芽识别率低、检测速度慢的问题,提出一种改进的YOLOv5s目标检测模型。首先收集在复杂棉田环境下棉花顶芽数据,其次在模型的主干网络中加入Hd-ShffleNetv2轻量化网络模块,以减少模型参数量,并加快模型的检测速度... 针对在复杂环境下棉花顶芽识别率低、检测速度慢的问题,提出一种改进的YOLOv5s目标检测模型。首先收集在复杂棉田环境下棉花顶芽数据,其次在模型的主干网络中加入Hd-ShffleNetv2轻量化网络模块,以减少模型参数量,并加快模型的检测速度。同时在颈部中加入NLMA与BotNeT注意力机制模块,增加对棉花顶芽的特征提取能力,从而提高模型的识别精度。最后,采用EIoU损失函数来解决在顶芽部分遮挡情况下的识别问题,进一步提高识别成功率。为验证改进的目标检测模型的实际效果,对棉花顶芽样本进行测试。测试结果表明,改进的YOLOv5s模型的平均检测精度达到91%,较比原始的YOLOv5s模型提升1个百分点,模型的检测置信度也有所提升。改进的目标检测模型满足棉花激光打顶机在棉田中的检测需求,为棉花激光打顶技术的进一步研究提供有力的技术支撑。 展开更多
关键词 棉花顶芽识别 YOLOv5s EIoU损失函数 轻量化模型 注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部