For the conventional single-ended eFuse cell, sensing failures can occur due to a variation of a post-program eFuse resistance during the data retention time and a relatively high program resistance of several kilo oh...For the conventional single-ended eFuse cell, sensing failures can occur due to a variation of a post-program eFuse resistance during the data retention time and a relatively high program resistance of several kilo ohms. A differential paired eFuse cell is designed which is about half the size smaller in sensing resistance of a programmed eFuse link than the conventional single-ended eFuse cell. Also, a sensing circuit of sense amplifier is proposed, based on D flip-flop structure to implement a simple sensing circuit. Furthermore, a sensing margin test circuit is proposed with variable pull-up loads out of consideration for resistance variation of a programmed eFuse. When an 8 bit eFuse OTP IP is designed with 0.18 ~tm standard CMOS logic of TSMC, the layout dimensions are 229.04 μm ×100.15μm. All the chips function successfully when 20 test chips are tested with a program voltage of 4.2 V.展开更多
文摘For the conventional single-ended eFuse cell, sensing failures can occur due to a variation of a post-program eFuse resistance during the data retention time and a relatively high program resistance of several kilo ohms. A differential paired eFuse cell is designed which is about half the size smaller in sensing resistance of a programmed eFuse link than the conventional single-ended eFuse cell. Also, a sensing circuit of sense amplifier is proposed, based on D flip-flop structure to implement a simple sensing circuit. Furthermore, a sensing margin test circuit is proposed with variable pull-up loads out of consideration for resistance variation of a programmed eFuse. When an 8 bit eFuse OTP IP is designed with 0.18 ~tm standard CMOS logic of TSMC, the layout dimensions are 229.04 μm ×100.15μm. All the chips function successfully when 20 test chips are tested with a program voltage of 4.2 V.