期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于LightGBM-SSA-ELM的新疆羊舍CO_(2)浓度预测 被引量:18
1
作者 尹航 吕佳威 +3 位作者 陈耀聪 岑红蕾 李景彬 刘双印 《农业机械学报》 EI CAS CSCD 北大核心 2022年第1期261-270,共10页
为减少肉羊集约化养殖过程中因环境恶化产生的应激反应,精准调控CO_(2)质量浓度,提出了基于分布式梯度提升框架(LightGBM)、麻雀搜索算法(SSA)融合极限学习机(ELM)的CO_(2)质量浓度预测模型。首先利用LightGBM筛选出与CO_(2)质量浓度相... 为减少肉羊集约化养殖过程中因环境恶化产生的应激反应,精准调控CO_(2)质量浓度,提出了基于分布式梯度提升框架(LightGBM)、麻雀搜索算法(SSA)融合极限学习机(ELM)的CO_(2)质量浓度预测模型。首先利用LightGBM筛选出与CO_(2)质量浓度相关的重要特征,降低预测模型的输入维度;然后选择Sigmoid为激活函数,使用具有较强非线性处理能力的单隐含层ELM神经网络算法构建CO_(2)质量浓度预测模型;最后通过麻雀智能优化算法对ELM模型中所需要的超参数进行优化,并将优化后模型应用于新疆玛纳斯集约化肉羊养殖基地。试验结果表明,该模型预测均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R^(2))分别为0.0213 mg/L、0.0136 mg/L和0.9886,综合性能指标优于支持向量回归(SVR)、反向传播神经网络(BPNN)、长短记忆神经网络(LSTM)、门限循环单元(GRU)和LightGBM等;CO_(2)质量浓度预测曲线贴近真实曲线,具有良好的预测效果,能有效满足集约化肉羊养殖过程中CO_(2)质量浓度精准预测及调控要求。 展开更多
关键词 羊舍 集约化养殖 CO_(2)质量浓度预测 极限学习机 麻雀搜索算法 分布式梯度提升框架
在线阅读 下载PDF
基于贝叶斯优化LightGBM的大坝变形预测模型 被引量:13
2
作者 高治鑫 包腾飞 +1 位作者 李扬涛 王一兵 《长江科学院院报》 CSCD 北大核心 2021年第7期46-50,57,共6页
为了解决大坝变形预测模型易陷入局部最优及不适用大规模数据等问题,采用一种快速高效的基于决策树的梯度提升框架LightGBM,并结合全局优化算法——贝叶斯优化进行大坝变形预测。为验证模型适用性,以两座实际混凝土坝工程为例分析,并与... 为了解决大坝变形预测模型易陷入局部最优及不适用大规模数据等问题,采用一种快速高效的基于决策树的梯度提升框架LightGBM,并结合全局优化算法——贝叶斯优化进行大坝变形预测。为验证模型适用性,以两座实际混凝土坝工程为例分析,并与多元线性回归、支持向量回归机和多层神经网络等预测结果进行比较。结果表明,该模型均方根误差(RMSE)和平均绝对误差(MAE)等指标均优于其他方法,验证了该模型的可行性及优越性。LightGBM可对输入参数的重要性进行评估,对影响大坝变形的特征进行筛选,从而确定对大坝变形影响更显著的因素,为后续的安全评估工作提供参考。 展开更多
关键词 大坝变形预测 贝叶斯优化 梯度提升框架 多元线性回归 支持向量回归机 多层神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部