期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
梯度提升树算法在陕北风电场短期风电功率预测中的应用 被引量:14
1
作者 孙川永 彭友兵 +4 位作者 刘志亮 郝赢玺 吴怡 东琦 郑永恒 《电网与清洁能源》 北大核心 2022年第4期124-128,134,共6页
为了对地形和气候条件复杂的陕北风电场短期风电功率进行准确预测,通过将(weather research and forecasting,WRF)模式输出结果和同期实测风电功率资料相结合,利用梯度提升树算法进行预报气象场和实测风电功率之间的统计关系分析,从而... 为了对地形和气候条件复杂的陕北风电场短期风电功率进行准确预测,通过将(weather research and forecasting,WRF)模式输出结果和同期实测风电功率资料相结合,利用梯度提升树算法进行预报气象场和实测风电功率之间的统计关系分析,从而建立了一套陕北风电场短期风电功率预测模型。以陕北靖边某风电场为例,预测结果表明:所提模型年平均预测准确率伟15.7%;月平均归一化均方根误差在20%以下。模型对风电场风电功率预测精度较好。 展开更多
关键词 梯度提升树算法 风电功率 WRF
在线阅读 下载PDF
基于梯度提升树算法的玉米施肥模型构建 被引量:5
2
作者 卓越 严海军 《水资源与水工程学报》 CSCD 2020年第4期223-228,237,共7页
为了模拟作物的土壤养分含量、施肥量与产量之间的非线性关系,利用玉米"3414"试验数据进行插值,以土壤养分含量和施肥量作为输入量,产量作为输出量,使用梯度提升树(GBDT)算法建立施肥模型,并与BP神经网络(BPNN)、支持向量回归... 为了模拟作物的土壤养分含量、施肥量与产量之间的非线性关系,利用玉米"3414"试验数据进行插值,以土壤养分含量和施肥量作为输入量,产量作为输出量,使用梯度提升树(GBDT)算法建立施肥模型,并与BP神经网络(BPNN)、支持向量回归(SVR)、随机森林(RF)算法建立的施肥模型进行对比。结果表明:应用构建的GBDT模型得到的玉米产量平均相对误差、平均绝对误差和均方根误差分别为0.46%、48.7和62.2 kg/hm^2,优于其他3种算法。基于GBDT算法的施肥模型在模拟土壤养分含量、施肥量与产量之间关系时具有较高精度,对于指导精准施肥具有较强的应用价值。 展开更多
关键词 施肥模型 梯度提升树算法 施肥量 产量 玉米
在线阅读 下载PDF
基于卷积神经网络与轻量级梯度提升树组合模型的电力行业短期以电折碳方法
3
作者 曾金灿 何耿生 +3 位作者 李姚旺 杜尔顺 张宁 朱浩骏 《上海交通大学学报》 北大核心 2025年第6期746-757,共12页
电力行业是碳排放的重点控排行业,准确、实时的电力行业碳排放计量是支撑其降碳减排的基础.目前,电力行业的碳排放计量主要基于实测法或核算法,难以很好地兼顾低计量成本与实时计量能力.为此,充分考虑电力行业良好的电力数据基础,挖掘电... 电力行业是碳排放的重点控排行业,准确、实时的电力行业碳排放计量是支撑其降碳减排的基础.目前,电力行业的碳排放计量主要基于实测法或核算法,难以很好地兼顾低计量成本与实时计量能力.为此,充分考虑电力行业良好的电力数据基础,挖掘电-碳间的相关关系,以电力历史数据为基础,基于机器学习方法提出一种电力行业短期以电折碳方法,实时估算电力行业短期碳排放情况.该方法使用卷积神经网络进行特征提取,并采用轻量级梯度提升树算法开展基于特征提取值的碳排放测算.此外,为了提升模型的泛化能力和鲁棒性,在模型训练中采用K折交叉验证技术,在模型参数优化过程中采用网格搜索技术.最后,为了验证所提模型的有效性,对比所提模型和其他机器学习模型在同等数据集划分条件下分别基于日度数据集与小时数据集中进行训练的效果.结果表明:所提模型在效果评估和测算值与目标值分布分析中均优于其他模型,能够较好地反映电力行业的短期碳排放情况. 展开更多
关键词 以电折碳 卷积神经网络 轻量级梯度提升树算法 碳排放 机器学习 组合模型
在线阅读 下载PDF
基于梯度提升回归树算法的生活用纸皱纹等级软测量模型 被引量:3
4
作者 张冬启 洪蒙纳 +1 位作者 李继庚 满奕 《中国造纸》 CAS 北大核心 2020年第6期36-42,共7页
皱纹等级是衡量生活用纸质量的重要指标之一。然而,工业生产过程中缺少皱纹等级的实时在线测量方法。为了解决上述问题,本研究通过实验对影响生活用纸皱纹质量的因素进行了分析。利用梯度提升回归树算法,对影响皱纹等级的表面粗糙度、... 皱纹等级是衡量生活用纸质量的重要指标之一。然而,工业生产过程中缺少皱纹等级的实时在线测量方法。为了解决上述问题,本研究通过实验对影响生活用纸皱纹质量的因素进行了分析。利用梯度提升回归树算法,对影响皱纹等级的表面粗糙度、皱纹深度、皱纹频率3个主要指标进行了建模,并通过预测这3个指标实现对皱纹等级的在线实时软测量。通过对比工业实测数据,发现该模型对表面粗糙度、皱纹深度、皱纹频率预测精度较高,测试数据的平均相对误差均小于5%。该模型解决了生活用纸皱纹等级在线软测量的问题,对生活用纸生产过程的质量控制提供了新的方法和依据。 展开更多
关键词 起皱 皱纹等级 软测量 梯度提升回归算法
在线阅读 下载PDF
基于梯度提升树的河南小麦成本收益分析 被引量:1
5
作者 温建 曾一鸣 +2 位作者 夏枫苒 汪松玉 雷丽娟 《江西农业学报》 CAS 2022年第12期204-210,共7页
基于2006—2020年河南省小麦生产数据,运用梯度提升树算法和文献分析法,分析了河南省小麦生产过程中成本和收益关系。结果表明:(1)2009—2019年的河南省小麦平均种植面积约占全国的23%,平均产量约占全国的27%。(2)通过对小麦生产过程中... 基于2006—2020年河南省小麦生产数据,运用梯度提升树算法和文献分析法,分析了河南省小麦生产过程中成本和收益关系。结果表明:(1)2009—2019年的河南省小麦平均种植面积约占全国的23%,平均产量约占全国的27%。(2)通过对小麦生产过程中的总成本、总产值、净利润、成本利润率以及平均售价进行分析发现,2016—2020年小麦的净利润情况不容乐观,大部分为负值。(3)气候不适、病虫害等自然原因大幅增加了小麦生产的成本。(4)梯度提升树模型的结果显示,在影响小麦生产成本的因子中,人工成本占比最大。综上,提出了降低河南省小麦生产成本和提高其经济效益的建议和对策,即改善投入结构、规模化种植、依靠科技、降低生产成本、政府加大支持和投入力度。 展开更多
关键词 梯度提升树算法 小麦 成本收益 河南省
在线阅读 下载PDF
基于异构网络特征与梯度提升决策树的协同药物预测 被引量:5
6
作者 聂丽霞 刘辉 邹凌 《计算机应用与软件》 北大核心 2020年第4期48-52,共5页
组合药物在复杂疾病特别是癌症的治疗中发挥越来越重要的作用。以组合药物靶标为初始节点在药物-蛋白质异构网络上执行重启型随机游走,将收敛后的概率分布作为药物组合的特征向量,训练梯度提升决策树模型来预测新的药物组合。在标准药... 组合药物在复杂疾病特别是癌症的治疗中发挥越来越重要的作用。以组合药物靶标为初始节点在药物-蛋白质异构网络上执行重启型随机游走,将收敛后的概率分布作为药物组合的特征向量,训练梯度提升决策树模型来预测新的药物组合。在标准药物组合数据集的性能评估表明,该方法比其他七种典型分类器和传统的提升算法具有更好的性能,且基于异构网络的特征显著提升了各分类器的性能,AUC值从0.528提升至0.909。 展开更多
关键词 药物组合 异构网络 随机游走 特征向量 梯度提升树算法
在线阅读 下载PDF
采用极限梯度提升算法的电力系统电压稳定裕度预测 被引量:9
7
作者 王慧芳 张晨宇 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第3期606-613,共8页
将极限梯度提升树(XGBoost)算法应用于电力系统电压稳定评估问题.根据电压稳定问题特点,提出能够反映电力系统运行状态的特征集;把电压稳定裕度绝对值作为映射目标,并介绍生成样本集的方法.在介绍XGBoost算法基本原理的基础上,研究该算... 将极限梯度提升树(XGBoost)算法应用于电力系统电压稳定评估问题.根据电压稳定问题特点,提出能够反映电力系统运行状态的特征集;把电压稳定裕度绝对值作为映射目标,并介绍生成样本集的方法.在介绍XGBoost算法基本原理的基础上,研究该算法的技术细节.在IEEE-39节点系统上进行验证,结果表明,XGBoost算法在R方值和平均绝对百分误差2项回归指标上均优于其他几类机器学习算法,且模型的计算速度最快,可以满足在线应用要求.同时,XGBoost算法具有良好的数值错误和数值缺失容错性,并可以针对预测偏差较大的样本进行数据补充,实现模型的更新,使得模型表现趋于稳定. 展开更多
关键词 电力系统 电压稳定性 机器学习 人工智能 极限梯度提升(XGBoost)算法
在线阅读 下载PDF
改进灰狼算法优化GBDT在PM_(2.5)预测中的应用 被引量:9
8
作者 江雨燕 傅杰 +2 位作者 甘如美江 孙雨辰 王付宇 《安全与环境学报》 CAS CSCD 北大核心 2024年第4期1569-1580,共12页
针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局... 针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局搜索能力;利用粒子群算法模拟灰狼种群得出的最佳适应度以用于惩罚项改进灰狼算法中的头狼更新策略。使用改进算法优化的梯度提升树(Gradient Boosting Decision Trees,GBDT)模型对北京市大气污染物监测数据中PM_(2.5)质量浓度进行预测,采用3种评估函数对各模型以及混合模型预测效果得分进行评估。结果显示,本文改进的灰狼算法对梯度提升树的优化效果优于其他算法,均方根误差E RMS为6.65μg/m^(3),平均绝对值误差E MA为3.20μg/m^(3),拟合优度(R^(2))为99%,比传统灰狼算法优化结果的均方根误差减少了19.19μg/m^(3),平均绝对值误差降低了10.03μg/m^(3),拟合优度增加了9百分点;与霍尔顿序列和莱维飞行改进的(Levy Flight-Halton Sequence,LHGWO)相比,改进的灰狼算法预测得分的均方根误差降低了10.39μg/m^(3),平均绝对值误差减小了6.71μg/m^(3),拟合优度提高了5百分点。研究表明了预测模型优化的有效性,为未来城市改善空气质量提供了科学依据和技术支持。 展开更多
关键词 环境学 PM_(2.5)质量浓度预测 改进灰狼算法(GWO) 梯度提升树算法(GBDT) 莱维(Levy)飞行 霍尔顿序列(Halton Sequence) 粒子群算法(PSO)
在线阅读 下载PDF
基于XGBoost算法划痕损伤PVC-P土工膜力学性能预测
9
作者 张宪雷 刘建群 张文慧 《水电能源科学》 北大核心 2025年第5期111-115,共5页
面膜堆石坝上游坝面膜防渗结构因施工操作不当或多孔隙介质垫层界面特性易造成PVC-P土工膜物理性划痕损伤,为判别划痕损伤PVC-P土工膜能否满足工程安全运行要求,以划痕损伤PVC-P土工膜断裂强度/延伸率试验数据为依托,构建了基于极端梯... 面膜堆石坝上游坝面膜防渗结构因施工操作不当或多孔隙介质垫层界面特性易造成PVC-P土工膜物理性划痕损伤,为判别划痕损伤PVC-P土工膜能否满足工程安全运行要求,以划痕损伤PVC-P土工膜断裂强度/延伸率试验数据为依托,构建了基于极端梯度提升(XGBoost)算法的预测模型,将该模型预测结果与随机森林(RF)算法预测结果进行比较,选用平均绝对误差(M MAE)、平均绝对百分比误差(M_(MAPE))、均方根误差(R_(RMSE))和决定系数(R^(2))作为评价指标评估了预测精度,并运用SHAP算法获得影响作用较大的划痕损伤阈值。结果表明,基于XGBoost算法的预测模型预测精度更高,SHAP法能够合理解释模型的预测结果,划痕角度是影响损伤后力学性能的主要因素。研究结果为工程技术人员准确预判划痕损伤PVC-P土工膜力学性能提供了参考。 展开更多
关键词 极端梯度提升(XGBoost)算法 随机森林(RF)算法 力学性能预测 PVC-P土工膜 断裂强度 断裂延伸率
在线阅读 下载PDF
基于改进Smote-GBDT算法的岩爆预测模型 被引量:6
10
作者 宋英华 江晨 +1 位作者 李墨潇 齐石 《中国安全科学学报》 CAS CSCD 北大核心 2023年第9期25-32,共8页
为准确预测岩爆等级,确保施工人员和设备安全,首先,从岩爆机制、数据和算法角度,分析埋深(D)、单轴抗压强度(UCS)、单轴抗拉强度(UTS)、岩石脆性指数(B_(1)、B_(2))、围岩最大切向应力(MTS)、应力集中系数(SCF)和弹性变形能指数(W_(et))... 为准确预测岩爆等级,确保施工人员和设备安全,首先,从岩爆机制、数据和算法角度,分析埋深(D)、单轴抗压强度(UCS)、单轴抗拉强度(UTS)、岩石脆性指数(B_(1)、B_(2))、围岩最大切向应力(MTS)、应力集中系数(SCF)和弹性变形能指数(W_(et))8个指标,建立岩爆预测指标体系;其次,针对岩爆样本存在的数据不均衡问题,引进托梅克联系(Tomek Link)对欠采样方法,改进合成少数类过采样(Smote)算法,对岩爆训练样本进行混合过采样;最后,构建SmoteTomek-梯度提升树(GBDT)岩爆预测模型,以38组数据验证模型的有效性,并与其他模型进行对比。结果表明:SmoteTomek-GBDT的准确率为92.1%,较未采样提升5.3%,Smote采样提升10.5%,优于随机过采样模型,并且避免跨等级的岩爆误判。 展开更多
关键词 岩爆预测 梯度提升(GBDT)算法 合成少数类过采样(Smote)算法 岩爆指标 托梅克联系(Tomek Link)
在线阅读 下载PDF
基于XGBoost算法的胶凝砂砾石劈拉强度预测分析 被引量:5
11
作者 郭磊 李泽宣 +2 位作者 田青青 郭利霞 高航 《建筑材料学报》 EI CAS CSCD 北大核心 2023年第4期378-382,388,共6页
将水泥质量浓度、砂率、水胶比和粉煤灰质量浓度设为输入变量,28 d劈拉强度设为输出变量,用极端梯度提升树(XGBoost)算法对胶凝砂砾石(CSG)的劈拉强度进行预测,并与随机森林(RF)算法的预测结果进行对比,以决策系数(R^(2))、均方根误差(R... 将水泥质量浓度、砂率、水胶比和粉煤灰质量浓度设为输入变量,28 d劈拉强度设为输出变量,用极端梯度提升树(XGBoost)算法对胶凝砂砾石(CSG)的劈拉强度进行预测,并与随机森林(RF)算法的预测结果进行对比,以决策系数(R^(2))、均方根误差(RMSE)、平均绝对误差(MAE)和平均百分比误差(MAPE)作为评估标准对2种算法进行对比分析.结果表明:XGBoost算法的R2为0.968 1,具有高度的预测准确性;相比表现良好的RF算法,XGBoost算法测试集的RMSE和MAE均降低了0.003, MAPE降低了0.32%,表明XGBoost算法能够对CSG劈拉强度进行更为精准的预测. 展开更多
关键词 极端梯度提升树算法 随机森林算法 强度预测 胶凝砂砾石 劈拉强度
在线阅读 下载PDF
铁路轨道工程物化阶段碳排放预测及影响因素研究
12
作者 鲍学英 韩通 霍雨雨 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第10期4299-4310,共12页
在国家“双碳”战略目标下,铁路领域低碳转型势在必行。轨道工程作为铁路工程的重要组成部分,其物化阶段产生的碳排放是铁路工程碳排放的重要来源。为量化铁路轨道工程物化阶段碳排放,并实现智能化分析,建立铁路轨道工程物化阶段碳排放... 在国家“双碳”战略目标下,铁路领域低碳转型势在必行。轨道工程作为铁路工程的重要组成部分,其物化阶段产生的碳排放是铁路工程碳排放的重要来源。为量化铁路轨道工程物化阶段碳排放,并实现智能化分析,建立铁路轨道工程物化阶段碳排放计算模型,并提出一种基于机器学习算法的碳排放预测及影响因素分析模型。首先,界定物化阶段研究边界,分解铁路轨道工程,以主要工序为基本计算单元,采用碳排放因子法建立碳排放计算模型;其次,运用梯度提升树算法(Light Gradient Boosting Machine,LigtGBM)构建碳排放预测模型,并引入可解释机器学习模型(Shapley Addictive Explanation,SHAP)分析影响因素对碳排放量的贡献。以某西南山区铁路轨道工程为例,选取其中典型单元轨节计算碳排放量,结果显示1 km长度碳排放总量为1290.94 t,物化阶段中材料生产阶段碳排放占比最大,约为87.21%;分项工程中铺轨和铺道床的碳排放占比较高,分别为47.44%和46.44%。提取该轨道工程碳排放相关特征作为影响因素,对LigtGBM-SHAP模型进行验证,各项评估指标的数值表明模型具有较好的预测效果,影响因素重要度由大到小依次为轨道结构形式、线路地段、轨枕类型或轨道板、施工天数、区段坡度、区段运输距离,并在结果分析中通过单因素特征依赖图明晰各影响因素的分类变量或数值变化对碳排放量产生的影响。研究成果为铁路轨道工程碳排放计算、预测及分析提供了一个更加智能、全面的研究模型,为铁路工程建设进行碳减排工作提供参考。 展开更多
关键词 物化阶段 碳排放预测 影响因素 梯度提升树算法 可解释机器学习
在线阅读 下载PDF
鄂尔多斯盆地临兴区块测井含气量解释方法 被引量:8
13
作者 李泽辰 杜文凤 +1 位作者 胡进奎 李冬 《煤炭学报》 EI CAS CSCD 北大核心 2018年第S2期490-498,共9页
煤层含气量不仅是煤层气储层综合评价的一个重要参数,同时,准确预测煤层含气量也是预防瓦斯爆炸事故的重要手段,因此准确确定煤层含气量是至关重要的。针对这一问题,以鄂尔多斯盆地东缘临兴区块为研究对象,结合前人研究成果,同时引入了... 煤层含气量不仅是煤层气储层综合评价的一个重要参数,同时,准确预测煤层含气量也是预防瓦斯爆炸事故的重要手段,因此准确确定煤层含气量是至关重要的。针对这一问题,以鄂尔多斯盆地东缘临兴区块为研究对象,结合前人研究成果,同时引入了基于决策树模型的集成算法模型,依据研究区实测数据,分别建立了煤层含气量的SVM模型、神经网络模型、随机森林模型、梯度提升树模型4种预测模型,分析并对比了各模型的性能。结果表明,基于决策树模型的集成算法模型预测效果更好,稳定更强,在样本量较少、维度较低的样本集上比SVM模型和ANN模型更有优势。 展开更多
关键词 煤层含气量预测 支持向量机算法 神经网络算法 随机森林算法 梯度提升树算法
在线阅读 下载PDF
基于Landsat的香格里拉市高山松地上生物量动态研究 被引量:1
14
作者 罗利彬 张加龙 《林业调查规划》 2023年第6期7-12,共6页
采用不同时期的Landsat5 TM卫星遥感影像数据和1987—2007年5期云南省香格里拉市森林资源连续清查样地调查数据,通过数据筛选,应用随机森林算法(RF)、梯度提升回归树算法(GBRT)等相关性分析模型,估测1987—2007年间云南省香格里拉市高... 采用不同时期的Landsat5 TM卫星遥感影像数据和1987—2007年5期云南省香格里拉市森林资源连续清查样地调查数据,通过数据筛选,应用随机森林算法(RF)、梯度提升回归树算法(GBRT)等相关性分析模型,估测1987—2007年间云南省香格里拉市高山松地上生物量动态变化规律。结果表明,GBRT算法的估测模型效果最好,决定系数R^(2)为0.99,预估精度P为70.07%;RF算法次之,决定系数R^(2)为0.89,预估精度P为66.10%。1987—2007年的20年间,香格里拉高山松地上生物量总量经历了先减又增的过程,1987、1992、1997、2002、2007年地上生物量分别为1023.29、1022.38、1011.73、1018.02、1019.33万t。但截至2007年,高山松地上生物量仍然未恢复到1987年水平。结合20年的林业发展过程,对高山松地上生物量动态变化原因进行简要分析,对后续研究提出了建议。 展开更多
关键词 高山松 地上生物量 动态变化 梯度提升回归算法(GBRT) 香格里拉市
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部