期刊文献+
共找到156篇文章
< 1 2 8 >
每页显示 20 50 100
基于梯度提升决策树算法的电力工程造价预测模型 被引量:1
1
作者 邵帅 赵祥 +2 位作者 敖慧凝 柳禾丰 王冬 《沈阳工业大学学报》 北大核心 2025年第3期302-308,共7页
[目的]电力工程造价预测在电网企业资源优化、财务稳定、风险管理、效率提升、项目决策、政策制定、市场秩序维护和投资者决策等方面具有重要意义。针对传统预测方法综合性能较差的问题,并考虑电力工程造价数据的小样本特性,提出了一种... [目的]电力工程造价预测在电网企业资源优化、财务稳定、风险管理、效率提升、项目决策、政策制定、市场秩序维护和投资者决策等方面具有重要意义。针对传统预测方法综合性能较差的问题,并考虑电力工程造价数据的小样本特性,提出了一种基于梯度提升决策树(gradient boosting decision tree,GBDT)的预测模型,通过优化训练过程中的残差,显著提升预测精度。[方法]从自然环境和技术因素出发,深入分析了电力工程造价的影响因子,筛选出11个影响电力工程造价的关键变量。通过数据清洗、特征编码和对数变换,构建适配GBDT模型的特征工程。采用Optuna框架进行超参数调优,并利用5折交叉验证法评估模型性能。模型优化以拟合优度作为评价指标,迭代寻找最优超参数,直至满足预测精度要求或达到最大迭代次数,最终建立结合Optuna框架的梯度提升决策树预测模型。以某地区变电工程造价数据为例,90%的数据样本作为训练集和验证集,10%的数据样本作为测试集,对比分析随机森林、神经网络、GBDT和结合Optuna的GBDT模型的预测效果,通过拟合优度与均方根误差进行性能评估。[结果]实验结果显示,结合Optuna的GBDT模型预测效果优于随机森林、神经网络及GBDT算法,预测值在真实值的±10元/kVA区间浮动。在验证集上,拟合优度为0.8923,均方根误差为8.01;在测试集上,拟合优度为0.8866,均方根误差为8.09。[结论]基于GBDT的电力工程造价预测模型能够精准预测电力工程造价,相较传统方法具有更高预测精度,尤其适用于电力工程造价类的小样本数据集。结合Optuna框架进行超参数调优,进一步提升了预测效果。未来研究将引入更多样本数据,并结合神经网络算法,探索更优的预测方案,助力电网企业实现高效运营与良性发展。 展开更多
关键词 电力工程 造价预测 梯度提升决策树 残差优化 对数变换 影响因子 特征工程 Optuna框架
在线阅读 下载PDF
基于关联分析和梯度提升决策树的低压接线错误漏电用户定位
2
作者 郑峻峰 陈超强 +1 位作者 陈凤 陈雅萱 《电力科学与技术学报》 北大核心 2025年第3期104-113,共10页
用户侧中性线、地线接线错误在低压台区大量存在,使得用户负荷电流转化为剩余电流、导致台区漏电保护频繁跳闸并被迫退出运行,对用电安全构成威胁。接线错误隐藏在用户内部,难以定位排查,是台区漏保投运困难的重要原因。利用接线错误用... 用户侧中性线、地线接线错误在低压台区大量存在,使得用户负荷电流转化为剩余电流、导致台区漏电保护频繁跳闸并被迫退出运行,对用电安全构成威胁。接线错误隐藏在用户内部,难以定位排查,是台区漏保投运困难的重要原因。利用接线错误用户的负荷电流和台区剩余电流之间存在显著关联的特点,提出了基于关联分析和梯度提升决策树(gradient boosting decision tree,GBDT)的接线错误漏电用户定位方法。首先,对台区剩余电流和用户负荷电流的关联性进行定性和定量分析,基于皮尔逊相关系数判断其是否存在因果关联;然后,构建各用户负荷电流与台区异常剩余电流的GBDT模型,计算各用户的重要性评分大小,以衡量各用户对台区剩余电流异动的贡献程度;最后,进一步精准识别异常用户。实验结果表明,所提方法在复杂故障场景下也具有精准的异常用户识别能力。 展开更多
关键词 关联性 剩余电流 接线错误漏电 故障用户定位 梯度提升决策树
在线阅读 下载PDF
基于梯度提升决策树模型的Sentinel-1图像浅海水深反演 被引量:2
3
作者 黄茂苗 魏永亮 +3 位作者 唐泽艳 刘浩 袁文枭 袁新哲 《海洋科学》 CAS CSCD 北大核心 2024年第4期1-17,共17页
利用合成孔径雷达(Synthetic Aperture Radar,SAR)反演浅海水深在海洋遥感中极具挑战性。本文采用梯度提升决策树(Gradient Boosting Decision Tree,GBDT)为核心的机器学习算法,使用Sentinel-1、全球水深数据、风场和流场数据来反演杭... 利用合成孔径雷达(Synthetic Aperture Radar,SAR)反演浅海水深在海洋遥感中极具挑战性。本文采用梯度提升决策树(Gradient Boosting Decision Tree,GBDT)为核心的机器学习算法,使用Sentinel-1、全球水深数据、风场和流场数据来反演杭州湾和长江口南缘相连的浅海区域的水深。首先分析反演的最佳风速和迭代次数,再对0~10 m、10~20 m、20~30 m、30~40 m、40~50 m的分段水深和0~10 m、0~20 m、0~30 m、0~40 m、0~50 m的总体水深用相关系数、均方根误差和平均绝对误差进行精度评价,最后分析反演水深的空间分布特征。结果表明:反演的最佳风速约为3.78 m/s,并且GBDT模型达到最佳精度时的迭代次数远小于其他模型,最佳迭代次数为4。分段水深中,40 m以内的相关系数都高于0.8,其中以10~20 m的相关系数最高,为0.9;40~50 m则最低,为0.73。40~50 m的平均绝对误差和均方根误差均为最大,分别为1.89 m和2.24 m,20~30 m的平均绝对误差和均方根误差均为最小,分别为0.75 m和0.96 m。在总体水深中,虽然随水深区间的扩大,相关系数会逐渐增加,但是平均绝对误差和均方根误差的精度都随水深区间的扩大而下降,且在0~50 m区间内的平均绝对误差和均方根误差最大,分别为1.06 m和1.59 m,因此反演的最佳区间为0~40 m。该区域的水深从杭州湾海岸线开始由浅及深阶梯增加,反演结果能够较好的表现研究区内的实际水深分布情况,比较符合当前区域的水下地形特征。 展开更多
关键词 遥感 合成孔径雷达 水深 梯度提升决策树 迭代
在线阅读 下载PDF
基于优化负样本采样策略的梯度提升决策树与随机森林的汶川同震滑坡易发性评价 被引量:28
4
作者 郭衍昊 窦杰 +3 位作者 向子林 马豪 董傲男 罗万祺 《地质科技通报》 CAS CSCD 北大核心 2024年第3期251-265,共15页
强震诱发的滑坡具有数量多、分布广、规模大等特点,严重威胁人民生命财产安全。滑坡易发性评价能够快速预测灾害空间分布,对于减轻震后灾害的危险性具有重要意义。在同震滑坡易发性评价研究中,如何选取滑坡负样本并通过耦合机器学习模... 强震诱发的滑坡具有数量多、分布广、规模大等特点,严重威胁人民生命财产安全。滑坡易发性评价能够快速预测灾害空间分布,对于减轻震后灾害的危险性具有重要意义。在同震滑坡易发性评价研究中,如何选取滑坡负样本并通过耦合机器学习模型提高评价精度的对比研究仍需进一步研究。以山区汶川地震诱发的滑坡为研究区,首先选取地形地貌、地质环境、地震参数等10个滑坡评价因子,分析滑坡空间分布规律;其次因子共线性分析检验数据冗余,接下来采用频率比法(FR)选取极低、低易发区滑坡负样本点的采样策略;最后采用基于决策树演化改进的梯度提升决策树(GBDT)、随机森林(RF)和耦合模型(FR-GBD与FR-RF),开展了基于机器学习的同震滑坡易发性区划并进行精度评价。研究结果表明:①滑坡空间分布受到多层级因子控制;②模型预测精度为:FR-RF(AUC=0.943)>FR-GBDT(AUC=0.926)>RF(AUC=0.901)>GBDT(AUC=0.856);③在低易发区选择滑坡负样本可以明显提高易发性精度。研究成果可为滑坡易发性中负样本的选择和评价模型构建提供参考同时也为震后滑坡的防灾减灾提供理论支持。 展开更多
关键词 随机森林(RF) 梯度提升决策树(GBDT) 机器学习 频率比法(FR) 采样策略 同震滑坡 滑坡易发性区划
在线阅读 下载PDF
基于梯度提升决策树的重庆市轨道交通网络特征对站点客流的影响分析 被引量:3
5
作者 张宗琼 周涛 《铁道运输与经济》 北大核心 2024年第7期190-200,共11页
为了探讨轨道交通网络特征对站点客流的影响,基于重庆市轨道交通站点客流数据、POI数据、道路网矢量数据等多源数据,选择表征网络结构特征的中心性、连通性、集聚性等22个影响因子,采用普通最小二乘法和梯度提升决策树模型对客流进行拟... 为了探讨轨道交通网络特征对站点客流的影响,基于重庆市轨道交通站点客流数据、POI数据、道路网矢量数据等多源数据,选择表征网络结构特征的中心性、连通性、集聚性等22个影响因子,采用普通最小二乘法和梯度提升决策树模型对客流进行拟合。结果表明,梯度提升决策树模型较普通最小二乘法的拟合度更好,其中站点效率是影响轨道站点客流最重要的因素,其次是临近中心性与站点重要性排序,对站点客流贡献度大于5%的因子共8个;同时对临近中心性、站点效率、公交站点密度等在内的9个影响因子进行独立效应分析,得到这些因子对站点客流均表现出非线性关系,且阈值效应显著。研究结果可为重庆市轨道交通资源的配置和轨道站点设置等提供一定的技术支持,也为其他城市轨道交通运营提供理论参考。 展开更多
关键词 城市交通 站点客流分析 梯度提升决策树 网络结构特征 非线性关系
在线阅读 下载PDF
采用梯度提升决策树的车辆换道融合决策模型 被引量:27
6
作者 徐兵 刘潇 +2 位作者 汪子扬 刘飞虎 梁军 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2019年第6期1171-1181,共11页
车辆在执行换道行为时,由于受到较多环境因素影响,难以准确进行换道识别和预测.为解决这一问题,提出一种基于梯度提升决策树(GBDT)进行特征变换的融合换道决策模型,以仿真驾驶员在高速公路上自由换道时的决策行为.采用主体车辆与目标车... 车辆在执行换道行为时,由于受到较多环境因素影响,难以准确进行换道识别和预测.为解决这一问题,提出一种基于梯度提升决策树(GBDT)进行特征变换的融合换道决策模型,以仿真驾驶员在高速公路上自由换道时的决策行为.采用主体车辆与目标车道后车的碰撞时间tlag及车辆周围交通状态变量进行车辆换道行为的建模分析,在NGSIM数据集上对建立的融合换道决策模型进行参数标定和模型测试.实验结果表明:融合换道决策模型以95.45%的预测准确率超越支持向量机、随机森林和GBDT等单一的换道决策模型,获得了最突出的表现.变量分析结果表明:新引入的换道决策变量tlag对车辆换道行为具有重要影响.提出的融合换道决策模型能够进一步减少因换道决策误判而导致的交通事故. 展开更多
关键词 梯度提升决策树(GBDT) 自由换道行为 NGSIM数据集 换道决策模型 碰撞时间
在线阅读 下载PDF
基于梯度提升决策树的微博虚假消息检测 被引量:21
7
作者 段大高 盖新新 +1 位作者 韩忠明 刘冰心 《计算机应用》 CSCD 北大核心 2018年第2期410-414,420,共6页
微博是信息共享的重要平台,同时,也成为虚假消息产生和推广的重要平台,虚假消息的传播严重扰乱了社会秩序。为了快速、有效地识别微博虚假消息,提出一种基于梯度提升决策树(GBDT)的虚假消息检测方法。首先,从评论的角度分析微博虚假消... 微博是信息共享的重要平台,同时,也成为虚假消息产生和推广的重要平台,虚假消息的传播严重扰乱了社会秩序。为了快速、有效地识别微博虚假消息,提出一种基于梯度提升决策树(GBDT)的虚假消息检测方法。首先,从评论的角度分析微博虚假消息和真实消息之间存在的差异,在此基础上提取评论中的文本内容、用户属性,信息传播和时间特性的分类特征;然后,基于分类特征,采用GBDT算法实现微博虚假消息识别模型;最后,在两个真实的微博数据集上进行验证。实验结果表明,基于GBDT的识别模型能有效提高微博虚假消息检测的准确率。 展开更多
关键词 微博 社交网络 虚假消息 梯度提升决策树 评论
在线阅读 下载PDF
应用梯度提升决策树算法预测套损 被引量:13
8
作者 周相广 李大伟 《计算机应用》 CSCD 北大核心 2018年第A02期144-147,共4页
套管变形和损坏(简称为套损)的预测是油气田开发工程中的重要工作,是减少工程事故、降低操作成本、提升工作效率的基础。针对油气生产过程中的套损问题,提出了应用大数据思想构建相关算法模型解决油田现场实际问题的思路和方法。通过分... 套管变形和损坏(简称为套损)的预测是油气田开发工程中的重要工作,是减少工程事故、降低操作成本、提升工作效率的基础。针对油气生产过程中的套损问题,提出了应用大数据思想构建相关算法模型解决油田现场实际问题的思路和方法。通过分析油田现场正常井、套损井的实际数据,分析引起套损的若干参数,确定并提取了影响套损的最重要的10个特征参数;应用基于相关性检验、方差分析、互信息等方法分析套管特征参数与套损的关联度,并确定数据关系模式;以此为基础应用梯度提升决策树算法构建套损风险评估算法模型,完成对样本数据的分类预测,获得各特征参数对套损的影响程度及概率分布;然后,预测了214口正常井中潜在成为套损井的前10口井及概率分布,量化了潜在套损风险。 展开更多
关键词 套损 特征参数 机器学习 关系模式 梯度提升决策树 评估模型
在线阅读 下载PDF
基于梯度提升决策树改进双向门限循环单元的锅炉变负荷燃烧系统建模 被引量:10
9
作者 杨国田 何雨晨 +1 位作者 李鑫 李新利 《热力发电》 CAS CSCD 北大核心 2021年第12期6-12,共7页
锅炉燃烧系统是一个典型变量多、耦合性强、大滞后、多输入/多输出的动态系统,构建符合实际工况的燃烧系统模型十分困难。本文提出一种新的基于双向门限循环单元(Bi-GRU)的锅炉燃烧系统建模方法,建立了变负荷(低、中、高负荷)工况下燃... 锅炉燃烧系统是一个典型变量多、耦合性强、大滞后、多输入/多输出的动态系统,构建符合实际工况的燃烧系统模型十分困难。本文提出一种新的基于双向门限循环单元(Bi-GRU)的锅炉燃烧系统建模方法,建立了变负荷(低、中、高负荷)工况下燃烧系统训练模型。同时,采用梯度提升决策树(GBDT)降低输入特征矩阵维数。GBDT模型可以在不同的负荷与输出下评估输入特征的权重,能在保留特征原有物理意义的基础上识别出权重比例最大的特征。基于GBDT的特征选择模型既能降低原始输入维数,又可以为后续燃烧控制策略提供理论指导。实际运行数据计算结果表明,Bi-GRU和GBDT建立的新的燃烧系统模型能够准确地反映不同负荷下主蒸汽流量、主蒸汽压力和NO_(x)排放量的动态变化。与传统的循环神经网络(RNN)模型相比,本文新模型的精度和性能都有显著提高,并且结构简单,计算量小。 展开更多
关键词 锅炉燃烧系统 双向门限循环单元 梯度提升决策树 输出特征
在线阅读 下载PDF
南京市城市轨道交通站点周边地区建成环境对居民活动的影响_基于梯度提升决策树与SHAP解释模型的分析 被引量:14
10
作者 周扬 邵天元 钱才云 《科学技术与工程》 北大核心 2023年第17期7509-7519,共11页
城市轨道交通作为低能耗、少污染、具有可持续属性的公共交通类型之一,其对沿线城市发展、居民生产生活产生深远影响。中国城市轨道交通建设目前仍处于高速发展阶段,部分站点周边地区面临空间利用率不匹配、潮汐客流趋势加重等问题。城... 城市轨道交通作为低能耗、少污染、具有可持续属性的公共交通类型之一,其对沿线城市发展、居民生产生活产生深远影响。中国城市轨道交通建设目前仍处于高速发展阶段,部分站点周边地区面临空间利用率不匹配、潮汐客流趋势加重等问题。城市轨道交通站点周边地区的城市空间规划需关注城市居民的活动特征,以提升站点地区城市空间全时段活力。以南京市中心城区内轨道交通站点周边地区为例,基于城市空间开放数据、实地踏勘调研、互联网移动定位服务(location based service,LBS)数据,采集统计与评价建成环境现状与居民活动特征数据,并运用梯度提升决策树与SHAP(Shapley addictive explanation)解释分析站点地区建成环境与居民活动的非线性关系及建成环境要素之间的交互作用,在此基础上提出建成环境要素适宜区间及协同优化条件,为城市轨道交通站点周边地区空间规划与优化提供建议。 展开更多
关键词 轨道交通站点周边地区 建成环境要素 居民活动 梯度提升决策树 SHAP
在线阅读 下载PDF
基于梯度提升决策树的冷轧高强钢卷力学性能预测 被引量:4
11
作者 王伟 马乾伦 +1 位作者 白振华 王子昂 《中国机械工程》 EI CAS CSCD 北大核心 2023年第18期2222-2229,共8页
基于1180 MPa级超高强度冷轧双相(DP)钢卷生产数据,研究了基于主成分分析的化学主成分提取方法、网格搜索和交叉验证相结合的超参数寻优方法,建立了DP钢力学性能梯度提升决策树(GBDT)预测模型,并将预测结果与BP神经网络模型和广义可加... 基于1180 MPa级超高强度冷轧双相(DP)钢卷生产数据,研究了基于主成分分析的化学主成分提取方法、网格搜索和交叉验证相结合的超参数寻优方法,建立了DP钢力学性能梯度提升决策树(GBDT)预测模型,并将预测结果与BP神经网络模型和广义可加模型的预测结果进行了比较。为了提高断后伸长率预测精度,以预测精度较高的GBDT预测模型为基础,通过模型预测误差分类模型和考虑误差补偿的模型预测修正方法,建立了考虑误差补偿的断后伸长率预测校正模型,该模型使断后伸长率在绝对误差±0.9%下的预测准确率达到了94.63%。DP钢性能预测模型在线运行时的实际预测精度较高,达到生产要求,有助于力学性能在线质量监控。 展开更多
关键词 冷轧高强钢 梯度提升决策树 力学性能预测 主成分分析 误差补偿
在线阅读 下载PDF
基于梯度提升决策树的城市车辆路径链重构 被引量:3
12
作者 徐建闽 魏鑫 +1 位作者 林永杰 卢凯 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第7期55-64,共10页
为了提取城市路网中车辆实际的行驶轨迹,支撑交通规划、设计、管理和评价等需求,提出了基于梯度提升决策树的城市车辆丢失路径链的重构方法。首先,根据车牌号码匹配目标车辆,以时间排序提取视频检测器获得的路径链,并结合交叉口邻接矩... 为了提取城市路网中车辆实际的行驶轨迹,支撑交通规划、设计、管理和评价等需求,提出了基于梯度提升决策树的城市车辆丢失路径链的重构方法。首先,根据车牌号码匹配目标车辆,以时间排序提取视频检测器获得的路径链,并结合交叉口邻接矩阵及路段行程时间估计进行路径链初次分离;然后,依据车辆出行特征和交通状况提取影响路径选择的关键特征,并基于此提出了基于梯度提升决策树的局部丢失路径链重构算法;最后,以某市南明区实际视频车牌识别数据为例,根据重构算法准确性和计算效率验证了文中算法与传统算法。结果表明,本文算法的重构准确率达到91%,对比传统算法,梯度提升决策树算法在车辆路径链重构方面有较大优势。 展开更多
关键词 梯度提升决策树 城市道路网络 车牌识别 路径链分离 路径链重构
在线阅读 下载PDF
基于梯度提升决策树的高速公路交织区汇入位置模型 被引量:3
13
作者 李根 孙璐 《交通运输系统工程与信息》 EI CSCD 北大核心 2018年第3期88-93,共6页
匝道车辆的汇入行为对高速公路交织区的通行能力有重要的影响,汇入位置是汇入行为中最重要的行为参数之一.本文利用梯度提升决策树(GBDT)建立了一个车辆汇入位置模型并对各变量进行了分析.考虑到汇入行为是一个二维驾驶行为,我们在模型... 匝道车辆的汇入行为对高速公路交织区的通行能力有重要的影响,汇入位置是汇入行为中最重要的行为参数之一.本文利用梯度提升决策树(GBDT)建立了一个车辆汇入位置模型并对各变量进行了分析.考虑到汇入行为是一个二维驾驶行为,我们在模型中引入了车辆进入辅助车道时的初始横向位置这一变量.利用NGSIM中的车辆轨迹数据对模型进行训练,并与Lognormal进行对比.结果表明,GBDT模型在AIC,BIC和R2这3个指标上均大幅优于Lognormal模型.最后,本文对解释变量的重要性和其偏效应进行了分析,其中初始横向位置的重要性最高;敏感性分析表明,GBDT模型能够深度挖掘汇入位置与变量之间隐藏的非线性关系. 展开更多
关键词 公路运输 交织区 梯度提升决策树 汇入位置 初始横向位置
在线阅读 下载PDF
基于梯度提升决策树的高速公路交织区汇入模型 被引量:15
14
作者 李根 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第3期563-567,共5页
为研究高速公路匝道车辆在交织区的汇入行为,基于梯度提升决策树(GBDT)建立了车辆汇入模型,引入超车时间T、拒绝间隙数N以及最大拒绝间隙G_(LR)来分析匝道车辆拒绝相邻间隙并超越主线前车的行为,并利用美国NGSIM项目中的车辆轨迹数据对... 为研究高速公路匝道车辆在交织区的汇入行为,基于梯度提升决策树(GBDT)建立了车辆汇入模型,引入超车时间T、拒绝间隙数N以及最大拒绝间隙G_(LR)来分析匝道车辆拒绝相邻间隙并超越主线前车的行为,并利用美国NGSIM项目中的车辆轨迹数据对模型进行训练和测试.结果表明:GBDT的预测精度较分类回归树和二元Logit模型分别提高5.3%和13.3%;引入变量T,N,G_(LR)使GBDT、分类回归树和二元Logit模型的预测精度分别提高6.0%,6.7%和5.3%;GBDT模型中超车时间T在所有变量中重要性值最高.GBDT模型能够准确地预测汇入行为,获得变量与汇入行为间隐藏的非线性关系;引入变量T,N,G_(LR)能够有效提高汇入模型的预测精度. 展开更多
关键词 公路运输 交织区 汇入行为 梯度提升决策树 超车时间
在线阅读 下载PDF
基于混合梯度提升决策树和逻辑回归模型的分组密码算法识别方案 被引量:11
15
作者 袁科 黄雅冰 +2 位作者 杜展飞 李家保 贾春福 《工程科学与技术》 EI CSCD 北大核心 2022年第4期218-227,共10页
针对密码算法识别工作中因密码算法数量增多、密文数据复杂化以及数据间干扰增加,导致单层识别方案的识别准确率和稳定性变差等问题,提出一种基于混合梯度提升决策树和逻辑回归模型,并基于该模型构造分组密码算法识别方案。在该方案中,... 针对密码算法识别工作中因密码算法数量增多、密文数据复杂化以及数据间干扰增加,导致单层识别方案的识别准确率和稳定性变差等问题,提出一种基于混合梯度提升决策树和逻辑回归模型,并基于该模型构造分组密码算法识别方案。在该方案中,首先,采用NIST随机性测试标准中的15种测试方法作为密文特征提取方法对密文文件进行特征提取,并选定有意义的10种特征值作为分类器的输入;然后,使用这10组特征训练梯度提升决策树模型,并利用其学习而生成的树来构造新特征;最后,将这些新特征做one-hot编码,并将其加入到原有特征中训练逻辑回归模型进行预测。在唯密文情况下,基于9种不同的分类器模型分别构造9种不同的密码算法识别方案,并利用这9种方案对2种典型的分组密码算法AES和3DES加密的不同大小的密文文件进行密码算法二分类实验,对5种常用的分组密码算法AES、3DES、Blowfish、CAST和RC2加密的不同大小的密文文件进行密码算法五分类实验。实验结果表明,相较于其他识别方案,当密文长度相同时,本文所提方案在二分类和五分类识别问题中几乎均有最高的识别准确率。同时,随着密文长度的变化,识别准确率呈波动性变化,本文所提方案波动幅度最小,受影响程度最小,稳定性最高。 展开更多
关键词 密码算法识别 机器学习 集成学习 梯度提升决策树 逻辑回归
在线阅读 下载PDF
基于梯度提升决策树模型的冷连轧机颤振研究 被引量:8
16
作者 周晓敏 郝勇凯 +2 位作者 丛文韬 魏志彬 温国栋 《振动与冲击》 EI CSCD 北大核心 2021年第13期154-158,共5页
冷连轧生产过程中,由于轧机振动异常可能造成产品质量问题甚至发生断带等影响正常生产,极大限制了生产效率。目前已有钢铁企业实现在线颤振监测,但监测系统只能通过振动报警后再进行降速等方式来抑制振动。针对冷连轧振动难以建立精确... 冷连轧生产过程中,由于轧机振动异常可能造成产品质量问题甚至发生断带等影响正常生产,极大限制了生产效率。目前已有钢铁企业实现在线颤振监测,但监测系统只能通过振动报警后再进行降速等方式来抑制振动。针对冷连轧振动难以建立精确的传统机理模型,利用现场实测生产数据,建立梯度提升决策树模型进行振动能量回归,并利用梯度提升决策树算法特性进行特征选择以寻找影响振动的重要因素并进行模型简化。实际生产数据仿真结果表明,通过梯度提升决策树所建模型能够有效选取重要因素、降低模型复杂度,而且建立的回归模型能够准确反映轧制振动能量的变化趋势。 展开更多
关键词 梯度提升决策树 特征选择 冷轧颤振
在线阅读 下载PDF
基于小波包和梯度提升决策树的轴承故障诊断 被引量:8
17
作者 夏田 詹瑶 郭建斌 《陕西科技大学学报》 CAS 2020年第5期144-149,共6页
针对轴承信号特征难提取,故障诊断准确率不高的问题,提出了一种利用小波包分解和梯度提升决策树(GBDT)进行轴承故障诊断的方法.首先采用小波包分解方法对轴承振动信号进行分解得到小波包系数,再计算每一频带的小波包能量作为轴承故障特... 针对轴承信号特征难提取,故障诊断准确率不高的问题,提出了一种利用小波包分解和梯度提升决策树(GBDT)进行轴承故障诊断的方法.首先采用小波包分解方法对轴承振动信号进行分解得到小波包系数,再计算每一频带的小波包能量作为轴承故障特征,构成轴承故障特征数据集,最后将故障特征数据集输入梯度提升决策树分类模型进行故障诊断.使用凯斯西储大学轴承测试数据对该方法进行验证,结果表明轴承故障诊断准确率达99.26%,具有良好的轴承故障诊断能力. 展开更多
关键词 小波包 梯度提升决策树 轴承 故障诊断
在线阅读 下载PDF
基于梯度提升决策树级联分类方法的城市轨道交通列车突发事件延误时间预测 被引量:6
18
作者 欧冬秀 张馨尹 +3 位作者 赵源 张雷 高博文 吴宇森 《城市轨道交通研究》 北大核心 2022年第10期65-70,共6页
为了精确预测城市轨道交通设备故障等突发事件致使的列车延误时间,提升应急处置效率和乘客引导服务水平,对地铁突发事件互联网发布数据和现场事故数据进行了关联融合,对面向不平衡的地铁事故数据随机欠采样,提出了一种基于GBDT(梯度提... 为了精确预测城市轨道交通设备故障等突发事件致使的列车延误时间,提升应急处置效率和乘客引导服务水平,对地铁突发事件互联网发布数据和现场事故数据进行了关联融合,对面向不平衡的地铁事故数据随机欠采样,提出了一种基于GBDT(梯度提升决策树)的级联分类预测方法,对地铁突发事件的延误时间进行预测。结果表明,GBDT级联分类方法在延误时间容许偏差为0~5 min时的预测延误时间准确率,比现场发布的预测延误时间准确率高20%~25%,比GBDT多分类预测方法准确率高5%。 展开更多
关键词 城市轨道交通 列车 突发事件 延误时间预测 级联分类方法 梯度提升决策树
在线阅读 下载PDF
基于近红外光谱和梯度提升决策树建立当归药材及伪品的定性判别模型 被引量:8
19
作者 拱健婷 李莉 +4 位作者 邹慧琴 徐东 王大仟 丛悦 刘长利 《世界科学技术-中医药现代化》 CSCD 北大核心 2019年第10期2237-2243,共7页
目的建立NIRS技术快速无损鉴别当归药材及其伪品的方法。方法采集当归及伪品断面的近红外光谱,结合模式识别法分析药材,用主成分分析(Principal component analysis,PCA)进行定性分析;对比梯度提升决策树(Gradient Boosting Decision Tr... 目的建立NIRS技术快速无损鉴别当归药材及其伪品的方法。方法采集当归及伪品断面的近红外光谱,结合模式识别法分析药材,用主成分分析(Principal component analysis,PCA)进行定性分析;对比梯度提升决策树(Gradient Boosting Decision Tree,GBDT)、支持向量机(Support Vector Machine,SVM)、人工神经网络(Artificial Neural Network,ANN)3种当归真伪判别模型的分类效果;利用RF筛选特征波长优化所建模型。结果PCA无法有效区别当归及其伪品;与ANN、SVM相比,GBDT具有更高的准确性,训练集与预测集的总体准确率分别为94.39%和90.38%;而后以RF选取出20个特征波长,建立的近红外特征光谱判别模型训练集和预测集的总体准确率也达到了91.59%和86.54%。结论近红外光谱技术结合GBDT鉴别当归药材真伪鉴别是可行的,为当归药材真伪快速无损鉴别提供了一种新方法。 展开更多
关键词 当归 对比梯度提升决策树 近红外 模式识别 判别模型 真伪鉴别
在线阅读 下载PDF
基于梯度提升决策树算法的鄱阳湖水环境参数遥感反演 被引量:24
20
作者 李怡静 孙晓敏 +4 位作者 郭玉银 刘发根 周冠华 徐崇斌 刘亮 《航天返回与遥感》 CSCD 2020年第6期90-102,共13页
鄱阳湖是中国第一大淡水湖和国际重要湿地,对区域经济发展和生态文明建设都具有非常重要的作用。近年来受气候变化及流域经济发展影响,其水质持续逼近轻度富营养,局部水华发生风险较高。为保护鄱阳湖水生态环境,探索适用于鄱阳湖的大尺... 鄱阳湖是中国第一大淡水湖和国际重要湿地,对区域经济发展和生态文明建设都具有非常重要的作用。近年来受气候变化及流域经济发展影响,其水质持续逼近轻度富营养,局部水华发生风险较高。为保护鄱阳湖水生态环境,探索适用于鄱阳湖的大尺度水质遥感监测方法至关重要。文章以鄱阳湖为实验区域,结合2018年7月和2019年8月两次鄱阳湖丰水期的实测水质数据和"高分一号"卫星影像,基于梯度提升决策树算法构建水质参数反演模型,反演了高锰酸盐指数、总磷、总氮、透明度、叶绿素a、悬浮泥沙等6种水质参数。对反演算法的输入波段和参数配置进行了调试与优化,以均方根误差和决定系数作为精度评价指标,测试了该算法对各水质参数反演的精度和速度,结果表明,梯度提升决策树算法反演各水质参数的精度较高且速度较快,对多数水质参数反演的决定系数在0.8以上,具有实用价值,能够实现对内陆复杂水体水质的高精度遥感监测。 展开更多
关键词 遥感反演 机器学习 梯度提升决策树算法 “高分一号”卫星数据 水环境 鄱阳湖
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部