期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于视觉显著性加权与梯度奇异值最大的红外与可见光图像融合 被引量:12
1
作者 程博阳 李婷 王喻林 《中国光学(中英文)》 EI CAS CSCD 北大核心 2022年第4期675-688,共14页
为了综合利用红外与可见光图像的光谱显著性信息,同时提高融合图像的视觉对比度,本文提出了一种基于视觉显著性加权与梯度奇异值最大的红外与可见光图像融合方法。首先,该全新算法通过滚动引导剪切波变换作为多尺度分析工具,来获取图像... 为了综合利用红外与可见光图像的光谱显著性信息,同时提高融合图像的视觉对比度,本文提出了一种基于视觉显著性加权与梯度奇异值最大的红外与可见光图像融合方法。首先,该全新算法通过滚动引导剪切波变换作为多尺度分析工具,来获取图像的近似层分量与多方向细节层分量。其次,针对反映图像主体能量特征的近似层分量,采用视觉显著性加权融合作为其融合规则,该方法利用显著性加权系数矩阵指导图像内的光谱显著性信息有效融合,提高了融合图像的视觉观察度。此外,采用基于梯度奇异值最大原则来指导细节层分量的融合,该方法可以极大程度地将隐藏在两种源图像内的梯度特征还原到融合图像中,使融合图像具有更加清晰的边缘细节。为了验证本文算法的有效性,进行了5组独立的融合实验,最终的实验结果表明,本文算法融合图像的对比度更高,边缘细节更加丰富,并且相较于其它现有典型方法,AVG、IE、Q^(E)、SF、SD、SCD等客观参数指标分别提高了16.4%、3.9%、11.8%、17.1%、21.4%、10.1%,因此具有更加优良的视觉效果。 展开更多
关键词 图像融合 滚动引导剪切波变换 显著性加权 梯度奇异值
在线阅读 下载PDF
采用奇异值梯度信息的暂态电能质量扰动自适应检测方法 被引量:14
2
作者 杨晓梅 郭朝云 +2 位作者 樊博 罗月婉 肖先勇 《电力自动化设备》 EI CSCD 北大核心 2019年第6期138-145,共8页
为了满足对电网非平稳扰动信号快速、准确分析的要求,提出了一种采用奇异值梯度信息的暂态电能质量扰动检测新方法。通过滑动窗奇异值分解(SVD)方法提取信号的变化特征、降低噪声干扰,并通过奇异值梯度求取扰动指示信号,得到初步定位结... 为了满足对电网非平稳扰动信号快速、准确分析的要求,提出了一种采用奇异值梯度信息的暂态电能质量扰动检测新方法。通过滑动窗奇异值分解(SVD)方法提取信号的变化特征、降低噪声干扰,并通过奇异值梯度求取扰动指示信号,得到初步定位结果。提出无参自适应阈值,进一步抑制噪声干扰并实现对暂态扰动信号的检测定位。所提算法原理简单,无需进行前置滤波及参数调节。一系列仿真试验的对比分析结果表明,所提算法定位准确、抗干扰能力强,对过零点扰动也有较好的检测效果。通过对变电站实际暂态扰动数据的检测分析,进一步验证了所提算法的有效性。 展开更多
关键词 暂态电能质量 扰动检测 奇异分解 奇异梯度 自适应阈 抗噪性
在线阅读 下载PDF
叠前非局部平均滤波压制随机噪音 被引量:10
3
作者 胡新海 欧阳永林 +2 位作者 曾庆才 王兴 康敬程 《煤田地质与勘探》 CAS CSCD 北大核心 2014年第5期87-91,共5页
非局部平均滤波方法的去噪性能优异,但其在地震资料处理中的应用刚刚起步。该方法利用数据具有的结构冗余,以包含局部结构的小窗口或邻域为单元,利用局部结构相似性进行加权运算,增强有效信号,压制随机噪音。针对叠前地震资料数据量大... 非局部平均滤波方法的去噪性能优异,但其在地震资料处理中的应用刚刚起步。该方法利用数据具有的结构冗余,以包含局部结构的小窗口或邻域为单元,利用局部结构相似性进行加权运算,增强有效信号,压制随机噪音。针对叠前地震资料数据量大、噪音背景强、局部结构简单;原始非局部平均算法对每一点滤波,需要对数据体内所有点计算权系数后进行加权计算,计算量大,对强噪音背景适用性差等不足,对原始非局部平均算法进行了改进,主要包括:基于速度谱的搜索窗口分割;基于梯度域奇异值分解的局部结构相似集选择方法;基于相似集大小的自适应滤波参数选择方法。试验结果表明,该方法改进后对于叠前地震数据的随机噪声具有较好的压制作用。 展开更多
关键词 叠前非局部平均滤波 自适应加权 梯度奇异分解 预选择 去噪
在线阅读 下载PDF
有效保持细节特征的快速非局部滤波方法 被引量:4
4
作者 许光宇 檀结庆 钟金琴 《计算机工程与应用》 CSCD 2012年第23期196-202,共7页
非局部均值滤波方法具有优异的去噪性能,但该算法计算复杂度太高,且滤波后图像有大量结构残留。研究了基于预选择的非局部均值滤波方法,并指出已有方法在提取图像子块特征方面的不足。利用梯度域奇异值分解提取图像子块的结构特征,提出... 非局部均值滤波方法具有优异的去噪性能,但该算法计算复杂度太高,且滤波后图像有大量结构残留。研究了基于预选择的非局部均值滤波方法,并指出已有方法在提取图像子块特征方面的不足。利用梯度域奇异值分解提取图像子块的结构特征,提出一种有效保持细节特征的快速非局部滤波方法。主要贡献有:(1)基于局部结构特征的鲁棒预选择方法;(2)相似集大小与滤波性能的关系以及相似子块的自动选取;(3)结构相似权系数的构造。利用欧氏距离的对称性进一步提高运行速度。实验结果表明,该方法在去除噪声的同时能有效地保持图像细节信息,取得滤波性能与运行速度之间较好的平衡。 展开更多
关键词 非局部滤波 梯度奇异分解 图像特征 预选择 结构相似权系数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部