期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于自适应梯度调制的音视频多模态平衡学习方法
1
作者 王忠美 敖文秀 +4 位作者 刘建华 贾林 张昌凡 彭深奥 刘金平 《智能系统学报》 北大核心 2025年第5期1217-1226,共10页
针对音视频多模态学习中因异质学习速率导致单一模态主导模型学习过程,抑制其他模态学习,进而削弱多模态协同决策效果的问题,提出一种基于自适应梯度调制的多模态平衡学习方法(adaptive gradient modulation based compensation and reg... 针对音视频多模态学习中因异质学习速率导致单一模态主导模型学习过程,抑制其他模态学习,进而削弱多模态协同决策效果的问题,提出一种基于自适应梯度调制的多模态平衡学习方法(adaptive gradient modulation based compensation and regularization,AGM-CR)。首先,根据模态间的学习梯度差异引入调制系数来自适应调整各模态的学习速率;然后,通过梯度均衡化策略,将单个模态的梯度损失作为正则项融入总损失来约束模态间梯度差异,进一步平衡各模态的学习过程;最后,实验结果表明在CREMA-D和RAVDESS数据集上,AGM-CR将分类准确率分别提高了2.5和3.3百分点,并在多次迭代中减小模型的梯度波动,表现出更高的训练稳定性和收敛速度。与现有的平衡方法相比,AGM-CR可即插即用,更具灵活性和通用性。 展开更多
关键词 平衡学习 多模态学习 梯度调制 自适应学习 梯度均衡化 学习速率 音视频模态 协同决策
在线阅读 下载PDF
一种基于Sobel梯度的直方图均衡算法及其在红外图像上的应用
2
作者 万昕 刘坤 崔昌浩 《红外技术》 CSCD 北大核心 2024年第4期452-459,共8页
为了能在动态范围压缩的同时增强红外图像的对比度,提出了一种基于Sobel梯度直方图均衡算法(gradient histogram equalization,GHE)。与以往的直方图均衡化(histogram equalization,HE)方法不同,该方法自适应地为图像强梯度的灰阶分配... 为了能在动态范围压缩的同时增强红外图像的对比度,提出了一种基于Sobel梯度直方图均衡算法(gradient histogram equalization,GHE)。与以往的直方图均衡化(histogram equalization,HE)方法不同,该方法自适应地为图像强梯度的灰阶分配高对比度,保留并增强16 bit图像中更多的细节。随后使用双Gamma映射对映射曲线进行调整,有效地抑制图像亮部的过曝现象,同时提高暗部的细节。该方法相比于传统的直方图均衡化算法在暗区细节处理、过曝抑制、对比度增强等方面都有较好的效果。 展开更多
关键词 红外图像 梯度直方图均衡化 双Gamma映射
在线阅读 下载PDF
基于改进Mask R-CNN的光学元件划痕缺陷检测研究 被引量:14
3
作者 马志程 李丹 张宝龙 《电子测量与仪器学报》 CSCD 北大核心 2023年第4期231-239,共9页
光学元件缺陷会直接影响整个光学系统的性能,在光学元件缺陷检测中,划痕缺陷无疑是检测的难点,划痕缺陷存在着尺寸小,长宽比却比较大,易受杂质影响的问题,本文将深度学习算法应用到光学元件缺陷检测,并根据划痕缺陷的特点,对Mask R-CNN... 光学元件缺陷会直接影响整个光学系统的性能,在光学元件缺陷检测中,划痕缺陷无疑是检测的难点,划痕缺陷存在着尺寸小,长宽比却比较大,易受杂质影响的问题,本文将深度学习算法应用到光学元件缺陷检测,并根据划痕缺陷的特点,对Mask R-CNN网络模型进行了改进,使算法对划痕缺陷也有了更好的检测效果。首先,将原有的ResNet更换为本文提出的CSPRepResNet,并添加ESE注意力机制,提高了特征提取的能力并减少了计算量;其次,利用K-means算法重新聚类anchor boxes的长宽比例;再次,将目标检测的损失函数由Cross Entropy改为梯度均衡化的Focal Loss,解决了正负样本不平衡问题的同时,更有利于对困难样本的检测,还可以消除离群点的影响。总体来说,检测的mAP@.5由原来的52.1%提高到57.3%,提高了5.2%,且推理速度几乎不变,可见,改进后Mask R-CNN对光学元件划痕缺陷有更好的检测效果。 展开更多
关键词 缺陷检测 Mask R-CNN 注意力机制 梯度均衡化的Focal Loss
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部