期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
基于梯度回归树的高填方边坡稳定性预测 被引量:1
1
作者 赵建祥 毕鹏飞 惠亚强 《水利水电技术(中英文)》 北大核心 2021年第S02期406-411,共6页
为研究高填方边坡雨季长期稳定性预测问题,以仁遵高速填方边坡为例,基于有限元计算和梯度回归树模型进行稳定系数长期拟合预测。研究结果表明:边坡稳定性变化在一年内分为平稳期、雨季波动期和缓冲期,其中雨季波动期稳定性最差,黏性土... 为研究高填方边坡雨季长期稳定性预测问题,以仁遵高速填方边坡为例,基于有限元计算和梯度回归树模型进行稳定系数长期拟合预测。研究结果表明:边坡稳定性变化在一年内分为平稳期、雨季波动期和缓冲期,其中雨季波动期稳定性最差,黏性土较砂性土边坡稳定系数劣化更为迅速,恢复更慢;基于梯度回归树模型,结合外界环境因素和内部土体材料对稳定系数进行预测,与实际值对比得到R^(2)为0.927,MSE为0.021,MAPE为3.877,拟合程度较高,且在雨季波动期的预测优势尤为突出;通过与线性回归模型、回归树、随机森林和XGB模型进行对比,得到该模型具有高拟合性、灵活性、强鲁棒性以及泛化能力强的优点,能够在高填方边坡稳定系数预测中广泛使用。 展开更多
关键词 梯度回归树 高填方边坡 稳定系数预测
在线阅读 下载PDF
基于梯度提升回归树的三江源地区植被指数的预测方法研究
2
作者 张国晶 颜青松 +3 位作者 秦文强 张兹予 李希来 黄建强 《草地学报》 北大核心 2025年第5期1655-1668,共14页
为了揭示三江源地区2000—2023年植被时空变化格局及影响因素,并预测气候变化条件下三江源地区植被可能的变化趋势,本研究基于三江源达日、玛多、玉树、曲麻莱四个地区2000—2023年归一化植被指数(Normalized difference vegetation ind... 为了揭示三江源地区2000—2023年植被时空变化格局及影响因素,并预测气候变化条件下三江源地区植被可能的变化趋势,本研究基于三江源达日、玛多、玉树、曲麻莱四个地区2000—2023年归一化植被指数(Normalized difference vegetation index,NDVI)数据,以及温度、降水、风速和气压等气候数据进行分析。研究采用了梯度提升回归树、自适应增强回归、随机森林以及神经网络等机器学习算法建立NDVI预测模型。在此基础上,对所有模型参数进行了精细调优和验证,以提升模型性能和可靠性。最终,筛选出了模拟精度最优模型,进行多情景下植被变化模拟。研究结果表明,温度对NDVI的气象特征值占比最高,达0.6486。梯度提升回归模型在所有研究区综合表现优于其他模型,平均均方误差(Mean squared error,MSE)在0.00045~0.00104之间,拟合系数(Coefficient of determination,R^(2))均超过0.90,显示出强大的拟合能力。梯度提升回归树在预测三江源地区NDVI方面具有较高的准确性和稳定性,并对NDVI数据具有良好拟合效果,为三江源地区NDVI预测提供了科学方法。研究结果有助于预警气候变化条件下植被退化的潜能,为气候变化背景下该区域植被生态保护提供科学依据。 展开更多
关键词 NDVI 机器学习 梯度提升回归 三江源地区
在线阅读 下载PDF
基于梯度提升回归树的城市道路行程时间预测 被引量:28
3
作者 龚越 罗小芹 +1 位作者 王殿海 杨少辉 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第3期453-460,共8页
为了提高行程时间的预测精度,在考虑时间序列相关性的同时,分析相邻路段的空间相关性对于行程时间的影响,并提出基于梯度提升回归树模型的城市道路行程时间预测方法.对车牌识别设备获取的实际数据进行预处理,并提出相应的补全算法以解... 为了提高行程时间的预测精度,在考虑时间序列相关性的同时,分析相邻路段的空间相关性对于行程时间的影响,并提出基于梯度提升回归树模型的城市道路行程时间预测方法.对车牌识别设备获取的实际数据进行预处理,并提出相应的补全算法以解决数据缺失问题,建立完整的历史数据集.通过分析各影响因素与行程时间的相关性,构建特征向量.为了能更好地理解模型,通过梯度提升回归树模型输出各变量对于预测结果的重要度.利用实际数据对模型进行评估,预测行程时间的平均绝对误差百分比,约为10.0%.与SVM、ARIMA等方法相比,所提方法具有较高的精度. 展开更多
关键词 交通工程 短时交通流预测 梯度提升回归模型(GBRT) 城市道路行程时间 车牌识别数据
在线阅读 下载PDF
基于梯度提升回归树的短时交通流预测模型 被引量:24
4
作者 沈夏炯 张俊涛 韩道军 《计算机科学》 CSCD 北大核心 2018年第6期222-227,264,共7页
短时交通流预测是交通流建模的一个重要组成部分,在城市道路交通的管理和控制中起着重要的作用。然而,常见的时间序列模型(如ARIMA)、随机森林(RF)模型在交通流预测方面由于被构建模型产生的残差和输入变量所影响,其预测精度受到限制。... 短时交通流预测是交通流建模的一个重要组成部分,在城市道路交通的管理和控制中起着重要的作用。然而,常见的时间序列模型(如ARIMA)、随机森林(RF)模型在交通流预测方面由于被构建模型产生的残差和输入变量所影响,其预测精度受到限制。针对该问题,提出了一种基于梯度提升回归树的短时交通预测模型来预测交通速度。首先,模型引入Huber损失函数作为模型残差的处理方法;其次,在输入变量中考虑预测断面受到毗邻空间因素和时间因素相关性的影响。模型在训练过程中通过不断调整弱学习器的权重来纠正模型的残差,从而提高模型预测的精度。利用某城市快速路的交通速度数据进行实验,并使用MSE和MAPE等指标将本文模型与ARIMA模型和随机森林模型进行对比,结果表明,文中所提模型的预测精度最好,从而验证了模型在短时交通流预测方面的有效性。 展开更多
关键词 短时交通流预测 梯度提升回归 损失函数 时空相关性
在线阅读 下载PDF
基于梯度提升回归树的有机污染物生物-沉积物积累因子预测模型 被引量:1
5
作者 王如冰 蔡喜运 《生态毒理学报》 CAS CSCD 北大核心 2023年第4期22-33,共12页
生物-沉积物积累因子(BSAF)是评价底栖无脊椎生物对有机污染物生物积累能力的重要参数,是由化合物、底栖环境与无脊椎生物之间的三相作用决定的。现有模型通常采用线性算法研究化合物BSAF与化合物理化性质的关系,忽略了由于环境-生物-... 生物-沉积物积累因子(BSAF)是评价底栖无脊椎生物对有机污染物生物积累能力的重要参数,是由化合物、底栖环境与无脊椎生物之间的三相作用决定的。现有模型通常采用线性算法研究化合物BSAF与化合物理化性质的关系,忽略了由于环境-生物-化合物相互作用引发的非线性影响,导致线性模型拟合和预测能力有限。本研究基于理化性质(PCP)和分子指纹(ECFP)描述化合物特征,结合环境样点和生物特征,采用梯度提升回归树(GBRT)的非线性算法,分别构建了底栖生物体内积累因子的GBRT-PCP和GBRT-ECFP预测模型,并与利用岭回归算法构建的线性模型进行比较。结果表明,GBRT模型训练集决定系数(R 2)均为0.97,验证集R 2为0.82~0.83,表明GBRT模型的拟合优度和预测能力显著优于岭回归模型(训练集和验证集R 2分别为0.38~0.56和0.38~0.52)。沉积物有机碳含量对生物-沉积物积累因子的影响呈波动下降趋势,脂质含量呈先波动上升而后下降趋势。GBRT-PCP模型结果表明,化合物疏水性(log K_(OW))对生物积累影响呈先平稳后上升而后下降趋势,吸附性(log K_(OC))对生物积累呈波动下降趋势。总体上,具有中等log K_(OW)(6.8~8.2)和中等log K_(OC)(4.4~5.2)的化合物易于积累在生物组织。GBRT-ECFP模型阐明了稠环、芳香环、醚键、C—Br键、联苯键等结构是影响生物积累的关键子结构,该模型基于分子指纹结构可实现对化学品生物积累的高通量预测。本研究建立的模型为化学品生态风险评价和管理决策制定提供理论依据和方法参考。 展开更多
关键词 有机污染物 底栖无脊椎生物 生物-沉积物积累因子 梯度提升回归
在线阅读 下载PDF
一种基于梯度提升回归树的系外行星宜居性预测方法
6
作者 朱维军 王鑫 +2 位作者 钟英辉 樊永文 陈永华 《计算机科学》 CSCD 北大核心 2019年第B06期71-73,79,共4页
系外行星的宜居性是近年来探索宇宙的一个热点研究课题,机器学习为系外行星宜居性分类提供了一种可行的手段。然而,现有的宜居性分类效果面临严重不足与局限。为此,给出一种基于梯度提升回归树的系外行星宜居性分类预测方法。首先,使用... 系外行星的宜居性是近年来探索宇宙的一个热点研究课题,机器学习为系外行星宜居性分类提供了一种可行的手段。然而,现有的宜居性分类效果面临严重不足与局限。为此,给出一种基于梯度提升回归树的系外行星宜居性分类预测方法。首先,使用梯度提升回归树算法对系外潜在宜居行星与非宜居行星的相关物理学与天文学数据集进行训练;然后,利用训练好的模型对相关测试集进行预测。仿真实验结果表明,新方法在测试集上的预测准确率高达100%。 展开更多
关键词 梯度提升回归 系外行星 宜居性 二分类
在线阅读 下载PDF
基于梯度提升回归树算法的地面臭氧浓度估算 被引量:19
7
作者 李一蜚 秦凯 +2 位作者 李丁 樊文智 何秦 《中国环境科学》 EI CAS CSCD 北大核心 2020年第3期997-1007,共11页
将机器学习中的梯度提升回归树(GBRT)算法应用到中国地区地面O3浓度制图中,利用地面O3浓度观测数据,结合WRF气象数据、MODIS植被归一化指数以及高程人口数据建立训练预测数据集.通过反向变量选择法选取模型最佳特征变量对其进行训练,十... 将机器学习中的梯度提升回归树(GBRT)算法应用到中国地区地面O3浓度制图中,利用地面O3浓度观测数据,结合WRF气象数据、MODIS植被归一化指数以及高程人口数据建立训练预测数据集.通过反向变量选择法选取模型最佳特征变量对其进行训练,十折交叉验证结果:决定系数R^2=0.89、均方根误差RMSE=4.75 μg/m^3.同时对全国O3人口暴露水平进行评估.结果表明:在暴露强度上,我国人口加权O3浓度值排在前5的省依次是山东、河南、江苏、河北、上海,均值浓度为94.48 μg/m^3.在暴露持续时间上,非达标天数最多的5个省依次是河南、山东、河北、宁夏、北京,一年内有42%的天数处于非达标的状态. 展开更多
关键词 臭氧(O3) 梯度提升回归(GBRT) 人口暴露 时空分布
在线阅读 下载PDF
梯度提升回归树在千岛湖水体CDOM反演中的应用 被引量:8
8
作者 金则澎 毛峰 +2 位作者 程乾 李军 张轩豪 《遥感信息》 CSCD 北大核心 2022年第1期110-118,共9页
针对清洁水体低浓度CDOM内陆水域的水质遥感反演精度不高的问题,基于梯度提升回归树和GF-5卫星数据构建了千岛湖水质CDOM反演模型。利用该模型估算了千岛湖水体CDOM的时空分布,计算CDOM浓度与相关气象数据之间的相关性,分析可能影响CDO... 针对清洁水体低浓度CDOM内陆水域的水质遥感反演精度不高的问题,基于梯度提升回归树和GF-5卫星数据构建了千岛湖水质CDOM反演模型。利用该模型估算了千岛湖水体CDOM的时空分布,计算CDOM浓度与相关气象数据之间的相关性,分析可能影响CDOM时空格局和动态变化的环境因子。将所构建的梯度提升回归树模型与其他机器学习模型进行了比较,分析结果表明,所构建的梯度提升回归树模型反演CDOM精度相对较高。反演的千岛湖整体CDOM浓度较低(0.005~1.472 m^(-1)),其季节性差异较为显著,秋季>夏季>春季>冬季。各个季节高CDOM浓度分布在位于湖的边缘区,主要是入水口以及湖周围与人类活动密切相关的地方,降雨量会增加千岛湖水体CDOM浓度,气压和风速对水质中CDOM的变化没有显著影响。 展开更多
关键词 GF-5 有色可溶性有机物 梯度提升回归 千岛湖水质 时空变化
在线阅读 下载PDF
基于梯度提升回归树算法的生活用纸皱纹等级软测量模型 被引量:3
9
作者 张冬启 洪蒙纳 +1 位作者 李继庚 满奕 《中国造纸》 CAS 北大核心 2020年第6期36-42,共7页
皱纹等级是衡量生活用纸质量的重要指标之一。然而,工业生产过程中缺少皱纹等级的实时在线测量方法。为了解决上述问题,本研究通过实验对影响生活用纸皱纹质量的因素进行了分析。利用梯度提升回归树算法,对影响皱纹等级的表面粗糙度、... 皱纹等级是衡量生活用纸质量的重要指标之一。然而,工业生产过程中缺少皱纹等级的实时在线测量方法。为了解决上述问题,本研究通过实验对影响生活用纸皱纹质量的因素进行了分析。利用梯度提升回归树算法,对影响皱纹等级的表面粗糙度、皱纹深度、皱纹频率3个主要指标进行了建模,并通过预测这3个指标实现对皱纹等级的在线实时软测量。通过对比工业实测数据,发现该模型对表面粗糙度、皱纹深度、皱纹频率预测精度较高,测试数据的平均相对误差均小于5%。该模型解决了生活用纸皱纹等级在线软测量的问题,对生活用纸生产过程的质量控制提供了新的方法和依据。 展开更多
关键词 起皱 皱纹等级 软测量 梯度提升回归算法
在线阅读 下载PDF
基于梯度提升回归树的武广高铁区间晚点恢复策略研究 被引量:4
10
作者 李津 文超 +1 位作者 杜雨琪 徐传玲 《中国铁路》 2021年第10期76-84,共9页
晚点列车区间恢复策略的智能推荐是高速铁路调度指挥自动化的关键技术,对于提高调度员决策效率,提升高速铁路运营控制水平具有十分重要的意义。基于武广高速铁路列车运行实绩数据,运用梯度提升回归树算法(GBRT),以晚点列车进入区间时间... 晚点列车区间恢复策略的智能推荐是高速铁路调度指挥自动化的关键技术,对于提高调度员决策效率,提升高速铁路运营控制水平具有十分重要的意义。基于武广高速铁路列车运行实绩数据,运用梯度提升回归树算法(GBRT),以晚点列车进入区间时间、晚点时长、图定运行时间、最短运行时间、历史平均运行时间、前车到达间隔约束和图定到站时间约束为自变量,构建区间晚点恢复策略的预测模型。使用测试集数据对模型进行验证评估,结果表明:模型在测试集上的预测平均绝对误差接近0.5 min,在允许误差不超过2 min的情况下,其预测精度达到95%以上;模型对比评价表明,GBRT模型的预测精度优于随机森林和多元线性回归等常用模型。 展开更多
关键词 高速铁路 晚点恢复 梯度提升回归 列车运行实绩 数据驱动
在线阅读 下载PDF
基于梯度提升回归树的井下定位算法 被引量:5
11
作者 郭银景 宋先奇 +1 位作者 杨蕾 吕文红 《科学技术与工程》 北大核心 2019年第8期138-144,共7页
为了提高井下定位系统的定位精度,提出了基于梯度提升回归树(gradient boost regression tree,GBRT)的井下定位算法。首先介绍了GBRT算法的实现过程,然后利用射线追踪算法模拟井下多径信号叠加后的接收信号强度(received signal strengt... 为了提高井下定位系统的定位精度,提出了基于梯度提升回归树(gradient boost regression tree,GBRT)的井下定位算法。首先介绍了GBRT算法的实现过程,然后利用射线追踪算法模拟井下多径信号叠加后的接收信号强度(received signal strength,RSS)数据集,最后对比了GBRT、K最近邻(K-nearest neighbor,KNN)、随机森林(random forest,RF)、支持向量机(support vector machine,SVM)和神经网络多层感知器(multi-layer perceptron regressor,MLPR)算法的定位结果并对GBRT的定位结果进行5点平均滤波。实验结果表明,在100个点组成的行人轨迹定位中,GBRT算法的定位结果的均方误差为0. 381 m,明显优于其他四种算法,平滑滤波后的定位轨迹更加贴合真实轨迹。所提算法可以有效提高定位精度,可以满足井下定位系统的精度要求。 展开更多
关键词 梯度提升回归 井下定位 接收信号强度 回归
在线阅读 下载PDF
城市建成环境与轨道交通车站组团客流关系研究
12
作者 刘军 罗维嘉 许心越 《华南理工大学学报(自然科学版)》 北大核心 2025年第8期1-10,共10页
准确刻画建成环境与城市轨道交通客流间的作用关系是掌握客流需求的重要前提。针对站间OD研究数据不完备、多维稀疏的问题,提出一种基于车站组团的建成环境与客流间映射关系研究方法,以实现组团OD的精准分析。首先,基于自然地理特性“... 准确刻画建成环境与城市轨道交通客流间的作用关系是掌握客流需求的重要前提。针对站间OD研究数据不完备、多维稀疏的问题,提出一种基于车站组团的建成环境与客流间映射关系研究方法,以实现组团OD的精准分析。首先,基于自然地理特性“以团代点”,考虑客流去向特征,计算团间相似度,形成两层的组团划分方法,解决数据稀疏的问题;其次,从O/D组团的吸引能力、OD可达性特征两个维度构造建成环境指标体系及建成环境描述方法;然后,提出一种基于梯度提升回归树(GBDT)模型的刻画建成环境特征和客流之间关系的方法,分析单因素对于客流的影响强度及阈值;最后,以北京地铁为例验证。结果表明:建成环境与轨道交通车站组团间客流存在时空异质性、非线性特征及阈值效应;组团的研究视角有效解决了数据稀疏的问题;OD阻抗特征是影响客流的首要特征,解释度高达38.40%;人口经济特征是次要影响因素,且存在显著的阈值效应。因此,在城市轨道交通规划的过程中,首先要着重关注网络拓扑,优化交通可达性,进而深入考量区域经济活动的影响。研究结果为轨道交通规划者提供定量的分析工具,可以帮助规划者确定建成环境指标的有效范围、调整空间,为提升轨道交通运营效能提供参考。 展开更多
关键词 城市轨道交通 建成环境 梯度提升回归模型 组团OD客流 非线性关系
在线阅读 下载PDF
基于级联的航班地面保障动态预测
13
作者 唐小卫 丁叶 +3 位作者 吴政隆 张生润 吴佳琦 叶梦凡 《北京航空航天大学学报》 北大核心 2025年第5期1557-1565,共9页
对航班地面保障过程进行精准预测是实现航班精细化管理、提升机场协同决策(A-CDM)系统管理效能的关键。为此,提出一种基于级联多输出梯度提升回归树模型的航班地面保障多节点动态预测方法。通过搭建级联框架实现了不同保障进度之间预测... 对航班地面保障过程进行精准预测是实现航班精细化管理、提升机场协同决策(A-CDM)系统管理效能的关键。为此,提出一种基于级联多输出梯度提升回归树模型的航班地面保障多节点动态预测方法。通过搭建级联框架实现了不同保障进度之间预测信息的传递和预测结果的更新,基于可进行多节点预测的梯度提升回归树设计了地面保障过程动态预测算法,以典型繁忙机场为对象构建了航班基础属性与层级信息传递两大类特征集。结果表明:所提方法有效实现了地面保障各关键节点完成时间的动态预测,初始预测各节点±5 min预测精度均达到80%以上,随着保障过程推进模型预测性能逐步提升,超过60%的节点±5 min最终预测精度超过95%,为提升航班运行的可预测性和机场多主体协同决策能力提供有效方法支撑。 展开更多
关键词 航空运输 航班地面保障 机场协同决策 级联 梯度提升回归 动态预测
在线阅读 下载PDF
基于回归近邻成分分析和GBRT的室内定位方法
14
作者 王斌涛 冷腾飞 +1 位作者 王益涵 郑家骅 《传感器与微系统》 CSCD 北大核心 2023年第11期66-69,共4页
WiFi指纹定位方法性能易受到室内无线信号波动的影响使得离线指纹存在冗余噪声而导致定位精度不足。对此,本文提出一种改进近邻成分分析(NCA)结合渐近梯度回归树(GBRT)室内定位方法。首先,构造连续可微的目标函数将离散优化问题转化为... WiFi指纹定位方法性能易受到室内无线信号波动的影响使得离线指纹存在冗余噪声而导致定位精度不足。对此,本文提出一种改进近邻成分分析(NCA)结合渐近梯度回归树(GBRT)室内定位方法。首先,构造连续可微的目标函数将离散优化问题转化为连续优化问题,并对离线指纹数据库进行特征提取去除冗余得到离线指纹的主要特征;然后,利用提取特征后的位置指纹数据和特征对应的坐标迭代构造多个CART TREE,利用每个CART TREE损失函数的负梯度值构造集成多个CART TREE得到GBRT定位模型;最后,利用待定位点位置指纹信号特征结合GBRT定位模型预测待定位点位置。实验结果表明:所提出算法相较于其他同类算法误差分别减少14.7%,22.4%,37.1%,能够有效提高定位精度。 展开更多
关键词 室内定位 冗余噪声 近邻成分分析 位置指纹 渐进梯度回归树
在线阅读 下载PDF
基于改进决策树的多变量功率曲线建模方法 被引量:7
15
作者 刘琳 郭鹏 《动力工程学报》 CAS CSCD 北大核心 2019年第8期647-653,共7页
为提高风电机组功率曲线的建模精度,利用偏互信息(PMI)方法对影响机组风能捕获的因素进行全面分析,并选取多参数作为输入变量。利用随机梯度提升回归树(SGBRT)算法,实现多变量下的功率曲线建模。结合某风电场1.5 MW机组数据采集与监视... 为提高风电机组功率曲线的建模精度,利用偏互信息(PMI)方法对影响机组风能捕获的因素进行全面分析,并选取多参数作为输入变量。利用随机梯度提升回归树(SGBRT)算法,实现多变量下的功率曲线建模。结合某风电场1.5 MW机组数据采集与监视控制系统(SCADA)的实测数据,对所提出的功率曲线建模方法进行验证。结果表明:与现有功率曲线建模方法相比,采用SGBRT算法得到的功率曲线模型可更精确地预测风力机的功率特性,且预测误差最小。 展开更多
关键词 风电机组 功率曲线 多变量 梯度提升回归 改进决策
在线阅读 下载PDF
决策树集成方法在反舰导弹效能评估中的应用 被引量:9
16
作者 姬正一 陈阳 +2 位作者 沈培志 韩先平 齐鸿坤 《现代防御技术》 北大核心 2021年第4期15-23,34,共10页
在反舰导弹效能评估方法中,针对存在主观经验和计算时间成本高的问题,提出了随机森林和梯度提升回归树2种决策树集成方法。通过构建3层19个分量的反舰导弹效能评估指标体系,改进的ADC(availability dependability capacity)评估模型建... 在反舰导弹效能评估方法中,针对存在主观经验和计算时间成本高的问题,提出了随机森林和梯度提升回归树2种决策树集成方法。通过构建3层19个分量的反舰导弹效能评估指标体系,改进的ADC(availability dependability capacity)评估模型建立了不同状态反舰导弹武器系统参数数据样本240份,切分数据集后采用归一化处理,结合交叉验证和网格搜索等参数优化方法,得到了2个较为理想的决策树集成效能评估模型。在仿真试验测试验证中,模型的评估准确率较高,验证了该方法的实用性,为反舰导弹效能评估提供了新思路。 展开更多
关键词 反舰导弹 效能评估 决策集成 随机森林 梯度提升回归 机器学习
在线阅读 下载PDF
进港航班滑入时间预测 被引量:3
17
作者 唐小卫 丁叶 +2 位作者 张生润 任思豫 吴佳琦 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第7期2218-2224,共7页
准确预测进港航班滑入时间对合理调配航班保障资源和提高机场场面运行效率具有重要意义,可有效克服各大机场粗放式预测航班进港时刻的不足,为此提出一种基于机器学习模型的滑入时间预测方法。以首都机场为具体研究对象,分析进港航班滑... 准确预测进港航班滑入时间对合理调配航班保障资源和提高机场场面运行效率具有重要意义,可有效克服各大机场粗放式预测航班进港时刻的不足,为此提出一种基于机器学习模型的滑入时间预测方法。以首都机场为具体研究对象,分析进港航班滑入时间的影响因素并构建特征集;将线性回归、K-最近邻、支持向量机、决策树、随机森林和梯度提升回归树6种在滑出时间预测方面得到广泛应用的机器学习模型用于进港航班滑入时间预测。研究结果表明:在误差范围±3 min内6种机器学习模型的预测精度均超过90%,表明特征集的构建和模型的选择是有效的;综合预测性能与模型拟合评估结果,梯度提升回归树模型的预测效果最好;在梯度提升回归树模型上场面流量特征的贡献度最大,新引入的跨区特征对预测模型的贡献度超过了大部分传统特征。 展开更多
关键词 航空运输 机场场面运行 滑行时间预测 机器学习 梯度提升回归
在线阅读 下载PDF
基于TrAdaBoost-GBDT模型的排土场边坡稳定状态判别 被引量:1
18
作者 江松 李涛 +3 位作者 李锦源 李研博 张存良 张立杰 《中国安全科学学报》 CAS CSCD 北大核心 2024年第11期89-98,共10页
针对露天矿排土场失稳数据获取困难,样本数据量少等问题,提出基于迁移学习算法的露天矿排土场边坡稳定状态判别模型;结合陕西省F露天矿排土场边坡的实际地质条件和降雨情况,设计降雨条件下排土场不同土石混合比边坡的相似模拟试验方案,... 针对露天矿排土场失稳数据获取困难,样本数据量少等问题,提出基于迁移学习算法的露天矿排土场边坡稳定状态判别模型;结合陕西省F露天矿排土场边坡的实际地质条件和降雨情况,设计降雨条件下排土场不同土石混合比边坡的相似模拟试验方案,并采集和处理试验中边坡模型的含水率、土压力和孔隙水压力数据;考虑到小样本数据集对梯度提升回归树(GBDT)模型分类精度的影响,运用迁移学习思想,利用迁移自适应增强算法(TrAdaBoost)对源域数据集和目标域数据集样本权重进行迭代更新,以GBDT模型作为数据样本训练的弱学习器,最终根据弱学习器的分类结果,通过加权多数表决法生成一种基于迁移学习的TrAdaBoost-GBDT排土场边坡稳定状性判别模型,以提高小样本数据标签类别的判别准确率。结果表明:相对其他算法模型,提出的排土场边坡稳定状态判别模型在稳定状态判别上有更好的表现,准确率、精准率、召回率和曲线下面积值(AUC)分别达到93.3%、87.5%、100%和93.8%,能够作为边坡稳定状态判别的分类器。该模型相对其他算法模型可以提高小样本数据集的边坡稳定状态判别的准确性,弥补机器学习对小样本数据集分类结果精度较低的不足。 展开更多
关键词 排土场边坡 稳定状态判别 迁移自适应增强梯度提升回归(TrAdaBoost-GBDT) 迁移学习 小样本
在线阅读 下载PDF
应用机器学习算法模型预测兴安落叶松地上生物量 被引量:6
19
作者 沐钊颖 张兹鹏 +1 位作者 张浩 姜立春 《东北林业大学学报》 CAS CSCD 北大核心 2024年第3期41-47,共7页
为了准确预测兴安落叶松地上生物量,以小兴安岭201株兴安落叶松地上生物量作为研究对象,以胸径(D)和树高(H)为变量,构建随机森林(RF)、人工神经网络(ANN)、支持向量回归(SVR)和梯度提升回归树(GBRT)等4种机器学习模型,并将机器学习算法... 为了准确预测兴安落叶松地上生物量,以小兴安岭201株兴安落叶松地上生物量作为研究对象,以胸径(D)和树高(H)为变量,构建随机森林(RF)、人工神经网络(ANN)、支持向量回归(SVR)和梯度提升回归树(GBRT)等4种机器学习模型,并将机器学习算法的预测结果与传统二元生物量模型的预测结果进行对比分析。结果表明:对比传统生物量模型,4种机器学习算法的拟合效果与检验精度均有了大幅度提高。模型拟合精度由高到低的顺序为随机森林、梯度提升回归树、人工神经网络、支持向量回归、传统生物量模型;RF模型在各模型中的拟合精度最高,相对于传统生物量模型,RF模型的确定系数(R~2)提升了3.72%,均方根误差(R_(MSE))降低了44.47%,平均绝对误差(M_(AE))降低了42.81%,相对误差绝对值(M_(PB))降低了42.80%,赤池信息准则值降低了18.17%。模型检验精度由高到低的顺序为随机森林、人工神经网络、梯度提升回归树、支持向量回归、传统生物量模型;RF模型在各模型中的预测精度最高,与传统生物量模型相比,RF模型的确定系数(R~2)提升了1.08%,均方根误差(R_(MSE))降低了10.95%,平均绝对误差(M_(AE))降低了10.34%,相对误差绝对值(M_(PB))降低了10.34%,赤池信息准则值降低了5.20%。因此,相对于传统生物量模型,4种机器学习算法模型均可以提高兴安落叶松地上生物量的预测精度,RF模型的预测精度最高。 展开更多
关键词 兴安落叶松 地上生物量 随机森林 人工神经网络 支持向量回归 梯度提升回归
在线阅读 下载PDF
基于机器学习的方形截面高层建筑干扰风压预测 被引量:3
20
作者 胡松雁 谢壮宁 杨易 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第6期1425-1437,共13页
为了预测干扰作用下方形截面高层建筑风荷载,进行了576组工况的风洞干扰试验.应用3种机器学习方法对受扰建筑风荷载进行了预测模型的训练、测试和对比验证.预测结果表明:决策树回归(DTR)、随机森林(RF)和梯度提升回归树(GBRT)模型均能... 为了预测干扰作用下方形截面高层建筑风荷载,进行了576组工况的风洞干扰试验.应用3种机器学习方法对受扰建筑风荷载进行了预测模型的训练、测试和对比验证.预测结果表明:决策树回归(DTR)、随机森林(RF)和梯度提升回归树(GBRT)模型均能有效预测受扰建筑风荷载,且预测平均风荷载性能优于预测极值风荷载;GBRT模型在预测风荷载方面表现最佳,该模型预测极小值和平均风荷载得到的R^(2)分别为0.9940和0.9997;经过超参数优化的GBRT模型,不论是内插还是外推,均能展现良好的预测性能;对比显示在迎风面及两侧面上预测风压分布较好,在背风面预测效果相对较弱.GBRT模型可为预测干扰作用下高层建筑风荷载提供一种经济有效的、可以部分替代传统风洞试验和数值模拟的机器学习方法. 展开更多
关键词 高层建筑 干扰效应 风压系数 机器学习 梯度提升回归
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部