在传感器网络定位问题中,利用接收信号强度RSSI(Received Signal Strength Indication)的定位方法存在着接收信号传播不稳定,定位精度较低的问题。为解决该问题,提出了一种基于阈值Nesterov加速梯度下降NAGT(Nesterov Accelerated Gradi...在传感器网络定位问题中,利用接收信号强度RSSI(Received Signal Strength Indication)的定位方法存在着接收信号传播不稳定,定位精度较低的问题。为解决该问题,提出了一种基于阈值Nesterov加速梯度下降NAGT(Nesterov Accelerated Gradient Descent with Threshold)的RSSI定位算法。算法引入Nesterov思想,不断更新寻优动量,以达到损失函数最小,从而求取对应的未知基站坐标,通过增设阈值,降低了算法陷入局部最优的概率。经仿真比较分析,NAGT方法相对于粒子群算法与随机梯度法,在定位精度与效率上有着较为明显的优势。展开更多
中国科学院上海应用物理研究所联合中国电子科技集团第十二研究所(中电十二所)和上海三浩真空技术有限公司(三浩真空),经过长期的理论研究和技术攻关,成功研发了高梯度C波段射频加速技术单元,在SDUV-FEL加速器平台上进行了该技术单...中国科学院上海应用物理研究所联合中国电子科技集团第十二研究所(中电十二所)和上海三浩真空技术有限公司(三浩真空),经过长期的理论研究和技术攻关,成功研发了高梯度C波段射频加速技术单元,在SDUV-FEL加速器平台上进行了该技术单元试验研究,获得了50 m V/m的带束加速梯度,实验结果表明该技术研究取得重大进展。展开更多
针对多用户大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统存在较高峰值平均功率比(Peak-to-Average Power Ratio,PAPR)问题,在系统的下行链路中利用基...针对多用户大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统存在较高峰值平均功率比(Peak-to-Average Power Ratio,PAPR)问题,在系统的下行链路中利用基站大量天线提供的冗余自由度,将OFDM调制、消除多用户之间干扰及降低PAPR联合成凸优化问题,并设计加速近端梯度算法(Accelerated Proximal Gradient Method,APGM)求解上述优化问题。仿真结果表明,所提方法显著降低了发射信号的峰均比,同时获得了较好的系统误符号率。与其他相关方法对比,APGM具有更低的计算复杂度和更快的收敛速度。展开更多
文摘在传感器网络定位问题中,利用接收信号强度RSSI(Received Signal Strength Indication)的定位方法存在着接收信号传播不稳定,定位精度较低的问题。为解决该问题,提出了一种基于阈值Nesterov加速梯度下降NAGT(Nesterov Accelerated Gradient Descent with Threshold)的RSSI定位算法。算法引入Nesterov思想,不断更新寻优动量,以达到损失函数最小,从而求取对应的未知基站坐标,通过增设阈值,降低了算法陷入局部最优的概率。经仿真比较分析,NAGT方法相对于粒子群算法与随机梯度法,在定位精度与效率上有着较为明显的优势。
文摘中国科学院上海应用物理研究所联合中国电子科技集团第十二研究所(中电十二所)和上海三浩真空技术有限公司(三浩真空),经过长期的理论研究和技术攻关,成功研发了高梯度C波段射频加速技术单元,在SDUV-FEL加速器平台上进行了该技术单元试验研究,获得了50 m V/m的带束加速梯度,实验结果表明该技术研究取得重大进展。
文摘针对多用户大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统存在较高峰值平均功率比(Peak-to-Average Power Ratio,PAPR)问题,在系统的下行链路中利用基站大量天线提供的冗余自由度,将OFDM调制、消除多用户之间干扰及降低PAPR联合成凸优化问题,并设计加速近端梯度算法(Accelerated Proximal Gradient Method,APGM)求解上述优化问题。仿真结果表明,所提方法显著降低了发射信号的峰均比,同时获得了较好的系统误符号率。与其他相关方法对比,APGM具有更低的计算复杂度和更快的收敛速度。