期刊文献+
共找到160篇文章
< 1 2 8 >
每页显示 20 50 100
基于梅尔倒谱系数的无人机探测与识别方法
1
作者 聂伟 张中洋 +1 位作者 杨小龙 周牧 《电子与信息学报》 北大核心 2025年第4期1076-1084,共9页
近年来无人机(UAV)数量的剧增,无论是在民用还是军用领域都带来了一定的隐私和安全问题,因此对无人机的管控技术已成为研究热点。当前基于深度学习的射频指纹识别(RFFI)技术虽然在无人机识别上表现优异,但由于模型复杂度高,训练速度慢,... 近年来无人机(UAV)数量的剧增,无论是在民用还是军用领域都带来了一定的隐私和安全问题,因此对无人机的管控技术已成为研究热点。当前基于深度学习的射频指纹识别(RFFI)技术虽然在无人机识别上表现优异,但由于模型复杂度高,训练速度慢,且在不同数据分布下的泛化能力有限,因此在实际应用中存在局限性。该文提出一种基于梅尔频率倒谱系数的无人机识别方法,使用USRP N210采集无人机图传信号,然后提取梅尔倒谱系数(MFCC)作为无人机射频指纹特征,输入门控循环单元(GRU)进行分类识别,最后通过正则化正交匹配追踪算法(ROMP)估计无人机定位参数得到无人机具体位置。试验结果表明无人机的识别准确率可达98%,且GRU模型参数量只有1.6 k,训练时间仅需9 s,显著降低了模型复杂度并提高了训练速度和识别精度,在无人机定位中,其3维定位误差小于1 m。为进一步验证该文所提方法的可行性,对同一厂家同一型号10个无线模块进行不同距离的分类识别,1 m,2 m,3 m和5 m识别结果分别为100%,98%,98%和99%。 展开更多
关键词 无人机 射频指纹识别 深度学习 门控循环单元 梅尔频率谱系
在线阅读 下载PDF
砂岩破裂状态声发射梅尔倒谱系数判识方法 被引量:1
2
作者 何学秋 杨菲 +5 位作者 李振雷 李娜 宋大钊 王洪磊 SOBOLEV Aleksei RASSKAZOV Igor 《煤炭学报》 EI CAS CSCD 北大核心 2024年第2期753-766,共14页
岩体结构破裂是严重制约矿山、地铁、隧道等地下空间工程建设及其安全运行的重要因素。实现对岩体结构破裂状态的识别是当下研究的热点与重点之一。为此,开展了不同条件的砂岩加载破坏实验,提取了加载全程的声发射梅尔倒谱系数及其波动... 岩体结构破裂是严重制约矿山、地铁、隧道等地下空间工程建设及其安全运行的重要因素。实现对岩体结构破裂状态的识别是当下研究的热点与重点之一。为此,开展了不同条件的砂岩加载破坏实验,提取了加载全程的声发射梅尔倒谱系数及其波动差,研究了系数及其波动差在砂岩受载破坏全程的变化规律,分析了1号系数(一组声发射梅尔倒谱系数包括12个,1号系数指第1个声发射梅尔倒谱系数)及其波动差与砂岩破裂状态的相关性特征,基于此提出了砂岩破裂状态声发射梅尔倒谱系数判识方法,构建了判识准则并进行判识效果检验。结果表明:随载荷增加,1号系数整体上增大,系数及其离散性在破坏阶段显著增大并表现出显著的规律波动性特征;1号系数波动差具有阶段性变化特征,波动差的大小及其起伏变化可表征砂岩的破裂,波动差整体增大及突增的变化可反映砂岩非稳定变形和峰后破坏阶段的宏观破裂,波动差的突增幅度可反映砂岩破裂程度;声发射梅尔倒谱系数及其波动差对砂岩破裂表现出良好的响应特征,该特征受不同加载条件的影响较小,说明声发射梅尔倒谱系数在反映砂岩破裂上具有适用性;1号系数及其波动差与砂岩破裂状态具有较好相关性,该相关性可分为3个阶段,即1号系数及其波动差在砂岩微破裂阶段分布集中,在临近失稳破坏阶段分布范围急剧增大、整体值升高且出现高异常值,在峰后破坏阶段分布范围进一步增大、整体值更高、高异常值更多;利用1号系数的75%位点值和异常值、1号系数波动差的75%位点值和异常值构建了砂岩破裂状态判识准则,采用三分类模型混淆矩阵对判识准则的效果进行了检验,判识准确度和精准度分别为90.43%、94.45%。该成果可为其他种类煤岩的破裂状态识别提供借鉴,为煤岩失稳监测预警提供参考。 展开更多
关键词 砂岩破裂状态 声发射 梅尔倒谱系数 判识方法
在线阅读 下载PDF
基于Fisher比的梅尔倒谱系数混合特征提取方法 被引量:17
3
作者 鲜晓东 樊宇星 《计算机应用》 CSCD 北大核心 2014年第2期558-561,579,共5页
针对语音识别中梅尔倒谱系数(MFCC)对中高频信号的识别精度不高,并且没有考虑各维特征参数对识别结果影响的问题,提出基于MFCC、逆梅尔倒谱系数(IMFCC)和中频梅尔倒谱系数(MidMFCC),并结合Fisher准则的特征提取方法。首先对语音信号提取... 针对语音识别中梅尔倒谱系数(MFCC)对中高频信号的识别精度不高,并且没有考虑各维特征参数对识别结果影响的问题,提出基于MFCC、逆梅尔倒谱系数(IMFCC)和中频梅尔倒谱系数(MidMFCC),并结合Fisher准则的特征提取方法。首先对语音信号提取MFCC、IMFCC和MidMFCC三种特征参数,分别计算三种特征参数中各维分量的Fisher比,通过Fisher比对三种特征参数进行选择,组成一种混合特征参数,提高语音中高频信息的识别精度。实验结果表明,在相同环境下,新的特征与MFCC参数相比,识别率有一定程度的提高。 展开更多
关键词 识别精度 梅尔倒谱系数 梅尔倒谱系数 中频梅尔倒谱系数 FISHER准则
在线阅读 下载PDF
水下声目标的梅尔倒谱系数智能分类方法 被引量:14
4
作者 张少康 田德艳 《应用声学》 CSCD 北大核心 2019年第2期267-272,共6页
传统水下声目标识别分类方法具有较强的人机交互特性,无法满足未来水下无人平台智能识别分类水声目标的需求。针对这一问题,提出了一种基于梅尔倒谱系数的水下声目标智能识别分类方法,该方法通过提取水下声目标梅尔倒谱系数特征,采用长... 传统水下声目标识别分类方法具有较强的人机交互特性,无法满足未来水下无人平台智能识别分类水声目标的需求。针对这一问题,提出了一种基于梅尔倒谱系数的水下声目标智能识别分类方法,该方法通过提取水下声目标梅尔倒谱系数特征,采用长短时记忆网络构建了智能识别分类模型。使用实际水声信号对该方法进行了验证,结果表明,基于梅尔倒谱系数的水下声目标智能识别分类方法能够在不依赖人工提取特征的情况下,对目标噪声进行识别分类,具备智能化识别分类能力。 展开更多
关键词 水下声目标识别分类 梅尔倒谱系数 长短时记忆网络 智能分类
在线阅读 下载PDF
改进的梅尔倒谱系数在低空飞行器特征提取中的应用 被引量:7
5
作者 肖寒春 郭俊峰 张丽 《应用声学》 CSCD 北大核心 2018年第6期909-915,共7页
梅尔倒谱系数特征提取技术依据人耳的感知特性将声信号从线性频域转换到梅尔域,在语音识别中得到广泛应用。该文将梅尔倒谱系数技术用于小型低空飞行器的声信号特征提取中,并针对螺旋桨驱动类的小型低空飞行器具有稳定的强谐波特性,对... 梅尔倒谱系数特征提取技术依据人耳的感知特性将声信号从线性频域转换到梅尔域,在语音识别中得到广泛应用。该文将梅尔倒谱系数技术用于小型低空飞行器的声信号特征提取中,并针对螺旋桨驱动类的小型低空飞行器具有稳定的强谐波特性,对梅尔倒谱系数特征提取中使用的梅尔滤波器进行改进,通过对此类谐波处的线性频谱与梅尔谱转换曲线的斜率进行投影替换,提高滤波器对该谐波处信号的感知敏感度。仿真结果表明,使用改进的梅尔倒谱系数特征提取方法对小型低空飞行器进行特征提取时,能够得到更低的等误识率,并且在低信噪比环境中,改进的梅尔倒谱系数特征提取方法具有更好的抗噪能力。 展开更多
关键词 小型低空飞行器 梅尔倒谱系数 特征提取 谐波线
在线阅读 下载PDF
基于改进梅尔倒谱系数的GIS机械故障诊断方法 被引量:23
6
作者 徐明月 李喆 +2 位作者 孙汉文 盛戈皞 江秀臣 《高压电器》 CAS CSCD 北大核心 2020年第9期122-128,共7页
机械故障是GIS常见的故障,若不及时发现会造成分合闸失误等重大安全隐患。文中提出了一种用于GIS机械故障在线监测的基于改进梅尔倒谱系数诊断方法。首先对预处理后的声音信号提取MFCC;为适应GIS运行声音能量变化平缓的特点,对MFCC进行... 机械故障是GIS常见的故障,若不及时发现会造成分合闸失误等重大安全隐患。文中提出了一种用于GIS机械故障在线监测的基于改进梅尔倒谱系数诊断方法。首先对预处理后的声音信号提取MFCC;为适应GIS运行声音能量变化平缓的特点,对MFCC进行优化得到改进特征;引入SVM构建基于声学的GIS机械故障诊断模型,并采用袋装算法对SVM模型进行集成。本研究通过在真型GIS上模拟机械故障,获取真实的故障声音信号进行训练和测试。实验结果表明,改进MFCC相较于传统MFCC在GIS故障声音识别系统中有着更高的识别精度。并且对比传统MFCC特征,改进的特征在噪声条件下也有更好的表现,尤其在信噪比低时,F1分数提升幅度可以达到30%左右。 展开更多
关键词 气体绝缘组合电器(GIS) 机械故障 故障诊断 梅尔倒谱系数 说话人识别
在线阅读 下载PDF
基于基频的梅尔倒谱系数在车辆识别中的应用 被引量:5
7
作者 李成娟 易强 +1 位作者 李宝清 王国辉 《重庆大学学报》 CSCD 北大核心 2021年第11期17-23,共7页
用传统的梅尔倒谱系数作为特征进行车辆识别时,识别效果易受噪声干扰。为增强特征鲁棒性,提出一种加权的基频自适应梅尔倒谱系数特征提取算法。首先用能熵比法对车辆声音信号进行端点检测;然后提取车辆信号的基频,自适应构建三角滤波器... 用传统的梅尔倒谱系数作为特征进行车辆识别时,识别效果易受噪声干扰。为增强特征鲁棒性,提出一种加权的基频自适应梅尔倒谱系数特征提取算法。首先用能熵比法对车辆声音信号进行端点检测;然后提取车辆信号的基频,自适应构建三角滤波器组,提高滤波器对基频的感知敏感度;最后对基频自适应梅尔倒谱系数进行F比加权。实验结果表明,与传统梅尔倒谱系数相比,在识别车辆时,加权的基频自适应梅尔倒谱系数识别准确率提高7.10%,虚警率降低3.93%,漏警率降低7.10%。 展开更多
关键词 梅尔倒谱系数 特征提取 车辆识别 基频
在线阅读 下载PDF
基于梅尔倒谱系数的矿山复杂微震信号自动识别分类方法 被引量:9
8
作者 何正祥 彭平安 廖智勤 《中国安全生产科学技术》 CAS CSCD 北大核心 2018年第12期41-47,共7页
为了实现矿山复杂微震信号的自动高效识别与分类,保证后续微震分析的时效性和准确性,运用梅尔倒谱系数法,将原始的4种微震信号(岩体破裂、爆破振动、电磁干扰和钻机凿岩)转化为梅尔标度上的非线性频谱,再转换到倒谱域上,结合其在时域上... 为了实现矿山复杂微震信号的自动高效识别与分类,保证后续微震分析的时效性和准确性,运用梅尔倒谱系数法,将原始的4种微震信号(岩体破裂、爆破振动、电磁干扰和钻机凿岩)转化为梅尔标度上的非线性频谱,再转换到倒谱域上,结合其在时域上的差分得到1组24维的特征参数向量,利用这些特征参数向量训练构建各类事件对应的混合高斯隐马尔可夫识别模型,进而实现对微震信号的自动识别分类。研究结果表明:运用基于梅尔倒谱系数的微震信号识别分类方法对矿山实际微震数据进行测试,微震事件的识别分类准确率达到92. 46%,具有较高的准确性,为实现微震监测系统的实时性分析提供了技术支持。 展开更多
关键词 微震信号 梅尔倒谱系数 混合高斯 隐马尔科夫 识别分类
在线阅读 下载PDF
声发射梅尔倒谱系数在砂岩破裂分析的应用 被引量:7
9
作者 李振雷 李娜 +5 位作者 杨菲 宋大钊 何学秋 薛雅荣 王洪磊 殷山 《煤炭学报》 EI CAS CSCD 北大核心 2023年第2期714-729,共16页
声发射技术在煤岩破裂分析领域进行了大量应用,取得了诸多有益成果,对煤岩动力灾害监测预警提供了重要指导,然而煤岩声发射分析仍存在进一步研究和完善的空间,亟待提出新的声发射分析方法。为此,开展了预制裂纹砂岩试样单轴加载破坏实验... 声发射技术在煤岩破裂分析领域进行了大量应用,取得了诸多有益成果,对煤岩动力灾害监测预警提供了重要指导,然而煤岩声发射分析仍存在进一步研究和完善的空间,亟待提出新的声发射分析方法。为此,开展了预制裂纹砂岩试样单轴加载破坏实验,同步采集了加载全程的应力应变数据和全波形声发射数据,并对试样进行全程高清摄像;利用声波分析手段提取了砂岩的声发射梅尔倒谱系数,探讨了该系数在砂岩破裂分析的优势及其原因,分析了该系数对砂岩破坏过程的响应,由此进一步研究揭示了预制裂纹砂岩试样的破裂破坏演化特征及声发射梅尔倒谱系数前兆信息。结果表明:对同种砂岩的不同试样,由不同通道采集的声发射信号提取的同号梅尔倒谱系数的变化特征相似、变化量相近、偏差程度小(5%~15%),并且在砂岩加载全程具有阶段性和敏感性的变化特征,说明声发射梅尔倒谱系数具有稳定性优势,可作为反映砂岩破裂状态的特征参数;梅尔倒谱系数可对声发射波形进行很好表征,系数提取过程不对波形设置门槛值,系数值由一段时间内声发射波形幅度和密集程度等整体形态决定,而不同通道采集的声发射波形整体形态在一段时间内趋向于相似,是该系数具有稳定性优势的原因;在砂岩破坏阶段,梅尔倒谱系数呈现周期性升降波动,对应应力曲线的周期性降升和高幅度声发射波形的间断性产生,3者的变化量之间具有显著的正相关关系,说明该系数的波动性及其强弱可反映砂岩的破裂过程及破裂的剧烈程度,是砂岩破裂的响应,由此揭示了砂岩的间歇性破裂破坏演化特征,该特征随着临近砂岩失稳破坏而变得愈发剧烈;以此为指导,利用梅尔倒谱系数周期性波动的波峰与波谷之差(即波动差)来表征系数的波动性强弱并描述砂岩间歇性破裂的剧烈程度,得到了梅尔倒谱系数周期性波动差逐渐增大且突增的砂岩破坏前兆。 展开更多
关键词 动力灾害 监测预警 砂岩破坏 声发射 梅尔倒谱系数 特征提取 前兆信息
在线阅读 下载PDF
基于改进小波包去噪与梅尔倒谱系数的低信噪比交通环境声音识别 被引量:14
10
作者 王若平 李仁仁 +2 位作者 陈达亮 王东 房宇 《科学技术与工程》 北大核心 2019年第36期290-295,共6页
随着自动驾驶汽车研究的不断深入,对其环境感知系统提出了更高的要求。为了使自动驾驶汽车适应更复杂的交通环境,研究了低信噪比声学环境感知技术,提出改进的小波包去噪方法;采用经验模态分解(EMD)的方法改进梅尔频率倒谱系数(MFCC)的提... 随着自动驾驶汽车研究的不断深入,对其环境感知系统提出了更高的要求。为了使自动驾驶汽车适应更复杂的交通环境,研究了低信噪比声学环境感知技术,提出改进的小波包去噪方法;采用经验模态分解(EMD)的方法改进梅尔频率倒谱系数(MFCC)的提取;采用支持向量机(SVM)识别模型完成低信噪比交通环境声音识别。实验结果表明,本文提取的去噪方法提高声音事件信噪比的同时保持声音特征,且对噪声有自适应性;改进的MFCC提取方法一定程度上提高了特征参数的抗噪性能。通过对低信噪比交通环境声音去噪和特征参数优化后,其平均识别率比优化前提高了33.34%,并改变了识别率骤降的趋势。 展开更多
关键词 交通环境声音事件 小波包去噪 经验模态分解 梅尔频率谱系 支持向量机
在线阅读 下载PDF
基于梅尔倒谱系数特征集的储能变流器开路故障诊断方法 被引量:9
11
作者 余斌 宋兴荣 +3 位作者 周挺 罗林波 李辉 车亮 《中国电力》 CSCD 北大核心 2022年第12期34-42,共9页
电池储能电站功率转换系统(power conversion system,PCS)故障诊断在储能电站智能运维中发挥着重要作用。现有方法在非侵入式识别PCS内部IGBT开路故障时,易出现信号特征提取困难、数据维度爆炸以及阈值判定区间不稳定等问题。提出一种... 电池储能电站功率转换系统(power conversion system,PCS)故障诊断在储能电站智能运维中发挥着重要作用。现有方法在非侵入式识别PCS内部IGBT开路故障时,易出现信号特征提取困难、数据维度爆炸以及阈值判定区间不稳定等问题。提出一种基于梅尔倒谱系数(Mel-scale frequency cepstral coefficients,MFCC)特征集的储能变流器开路故障诊断方法。首先,以交流侧三相电流为输入信号,通过分析不同频率区间的信号频谱能量分布情况和包络特征,构建MFCC故障特征数据集。然后,结合核主成分分析(kernel principal components analysis,KPCA),实现充放电工况下非线性故障特征的降维筛选;其次,以低维故障特征集为输入,构建基于贝叶斯优化算法(bayesian optimization algorithm,BOA)与一维卷积神经网络(1d-convolutional neural network,CNN-1D)的故障状态诊断模型;最后,通过并网储能变流器的故障仿真实验,与现有方法进行比较,结果表明:所提方法在复杂的噪声环境下的鲁棒性和准确性更优。 展开更多
关键词 电池储能 变流器 故障诊断 梅尔倒谱系数 诊断模型
在线阅读 下载PDF
基于梅尔倒谱系数的微细铣削颤振监测研究
12
作者 宋吉超 赵国龙 +2 位作者 李亮 年智文 何宁 《工具技术》 北大核心 2023年第12期135-139,共5页
微细铣削过程中的颤振是一种加工不稳定现象,会导致加工表面恶化、刀具快速磨损甚至刀具破损。本文提出了一种基于梅尔倒谱系数—隐马尔可夫模型改进的声音信号机器学习模型,更适用于加工过程的状态识别。开展Ti-6Al-4V钛合金微细铣削... 微细铣削过程中的颤振是一种加工不稳定现象,会导致加工表面恶化、刀具快速磨损甚至刀具破损。本文提出了一种基于梅尔倒谱系数—隐马尔可夫模型改进的声音信号机器学习模型,更适用于加工过程的状态识别。开展Ti-6Al-4V钛合金微细铣削在不同加工状态下的声音信号采集试验,用于训练机器学习模型并获得模式库。通过对铣削过程中的不同声音信号与模式库进行比较,验证了所提出的机器学习模型的准确性。研究表明,基于合理的特征选取和模型参数优化,所提出的机器学习模型对加工状态的识别准确率达到82%。本研究可为改进微细铣削过程中的在线监测技术提供指导。 展开更多
关键词 颤振预测 微细铣削 状态识别 梅尔倒谱系数 隐马尔科夫链
在线阅读 下载PDF
基于梅尔倒谱系数、深层卷积和Bagging的环境音分类方法 被引量:4
13
作者 王天锐 鲍骞月 秦品乐 《计算机应用》 CSCD 北大核心 2019年第12期3515-3521,共7页
针对传统环境音分类模型对环境音特征提取不充分,以及卷积神经网络用于环境音分类时全连接层易造成过拟合现象的问题,提出了梅尔倒谱系数(MFCC)、深层卷积和Bagging算法相结合的环境音分类方法。首先,针对原始音频文件,利用预加重、加... 针对传统环境音分类模型对环境音特征提取不充分,以及卷积神经网络用于环境音分类时全连接层易造成过拟合现象的问题,提出了梅尔倒谱系数(MFCC)、深层卷积和Bagging算法相结合的环境音分类方法。首先,针对原始音频文件,利用预加重、加窗、离散傅里叶变换、梅尔滤波器转换、离散余弦映射等方法建立梅尔倒谱系数特征模型;然后,将特征模型输入卷积深度网络进行第二次特征提取;最后,借鉴强化学习思想,用Bagging集成算法集成线性判别分析器、支持向量机(SVM)、Softmax回归、XGBoost四个模型,以投票预测的形式对网络输出结果进行预测。实验结果表明,所提方法能够有效提高对环境音的特征提取能力和深层网络在环境音分类上的抗过拟合能力。 展开更多
关键词 环境音分类 梅尔频率谱系 Bagging集成算法 特征提取 深度学习
在线阅读 下载PDF
噪声背景下梅尔频率倒谱系数与多注意力网络在电机故障诊断中的应用
14
作者 宋恩哲 朱仁杰 +2 位作者 靖海国 姚崇 柯赟 《哈尔滨工程大学学报》 北大核心 2025年第3期475-485,共11页
针对电机实际工作过程中存在噪声干扰导致故障诊断精度下降的问题,本文提出了一种基于梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络的故障诊断方法。通过梅尔频率倒谱系数动态特征提取噪声信号中的低频信息,并结合卷积注意力模... 针对电机实际工作过程中存在噪声干扰导致故障诊断精度下降的问题,本文提出了一种基于梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络的故障诊断方法。通过梅尔频率倒谱系数动态特征提取噪声信号中的低频信息,并结合卷积注意力模块的自适应调节能力及多特征融合策略进一步减少噪声对故障诊断的干扰。通过电机台架数据验证了该方法在噪声条件下诊断的可行性,然而该方法受梅尔频率倒谱系数参数与网络结构的直接影响,因此具体分析了不同参数条件对抗噪性能的影响。实验结果表明:在信噪比-10 dB噪声背景下,梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络相结合的故障诊断方法仍保持90%以上的诊断精度。 展开更多
关键词 电机 故障诊断 噪声环境 梅尔频率谱系 卷积神经网络 多尺度 卷积注意力模块 特征融合
在线阅读 下载PDF
基于脉搏波频域梅尔频率倒谱系数特征的高血压危险分层预测模型 被引量:3
15
作者 齐晨浩 杨晶东 +2 位作者 邱泽浩 尧明慧 燕海霞 《海军军医大学学报》 CAS CSCD 北大核心 2024年第10期1226-1240,共15页
目的 为改进基于人工智能技术高血压时域脉搏波分类模型精度低、泛化性能差的问题,提出一种基于融合注意力机制的频域脉搏波预测模型。方法 首先将时域脉搏波转换为频域梅尔频率倒谱系数特征,增强脉搏波区分度,采用时间卷积网络与Transf... 目的 为改进基于人工智能技术高血压时域脉搏波分类模型精度低、泛化性能差的问题,提出一种基于融合注意力机制的频域脉搏波预测模型。方法 首先将时域脉搏波转换为频域梅尔频率倒谱系数特征,增强脉搏波区分度,采用时间卷积网络与Transformer 结构提取脉搏波深层特征,并将自注意力机制与选择性内核注意力进行决策融合,提取脉搏波关联特征,并采用Floodings正则化方法间接控制训练损失,防止过拟合发生。针对上海中医药大学附属龙华医院及上海市中西医结合医院提供的527例临床脉诊数据,进行5折交叉验证实验。此外,采用梯度提升决策树算法统计脉搏波频域特征的贡献率排名,分析影响模型分类精度的关键因素,为中医临床辅助诊断提供参考价值。结果 本研究提出的模型分类评估指标准确度、F1值、精确率、召回率和AUC值分别为0.939 6、0.924 9、0.940 9、0.929 5和0.993 4。脉搏波的静态特征、一阶差分和二阶差分系数的贡献率相对均衡,说明高血压危险程度不仅与脉搏波的静态特征相关,也应当考虑脉搏波的动态特征。结论 与典型脉搏波分类模型相比,本研究提出的模型具有较高的分类精度和泛化性能。 展开更多
关键词 高血压 危险分层 梅尔频率谱系 时间卷积网络 TRANSFORMER
在线阅读 下载PDF
基于梅尔频率倒谱系数与翻转梅尔频率倒谱系数的说话人识别方法 被引量:23
16
作者 胡峰松 张璇 《计算机应用》 CSCD 北大核心 2012年第9期2542-2544,共3页
为提高说话人识别系统的识别率,提出了基于梅尔频率倒谱系数(MFCC)与翻转梅尔频率倒谱系数(IMFCC)为特征参数的特征提取新方法。该方法利用Fisher准则将MFCC和IMFCC相结合,构造了一种混合特征参数。实验结果表明,新的混合特征参数与MFC... 为提高说话人识别系统的识别率,提出了基于梅尔频率倒谱系数(MFCC)与翻转梅尔频率倒谱系数(IMFCC)为特征参数的特征提取新方法。该方法利用Fisher准则将MFCC和IMFCC相结合,构造了一种混合特征参数。实验结果表明,新的混合特征参数与MFCC相比,在纯净语音库及噪声环境中均具有较好的识别性能。 展开更多
关键词 说话人识别 梅尔频率谱系 翻转梅尔频率谱系 FISHER准则 高斯混合模型
在线阅读 下载PDF
基于梅尔频率倒谱系数与动态时间规整的安卓声纹解锁系统 被引量:11
17
作者 陈锦飞 徐欣 《计算机工程》 CAS CSCD 北大核心 2017年第2期201-205,共5页
安卓设备通常采用数字或图形密码解锁,但此类口令形式的密码安全性不高,而且部分安卓版本存在锁屏绕过漏洞的问题。为此,设计一种利用用户声纹特征的安卓解锁系统。采用梅尔频率倒谱系数提取声纹特征,使用动态时间规整算法进行文本相关... 安卓设备通常采用数字或图形密码解锁,但此类口令形式的密码安全性不高,而且部分安卓版本存在锁屏绕过漏洞的问题。为此,设计一种利用用户声纹特征的安卓解锁系统。采用梅尔频率倒谱系数提取声纹特征,使用动态时间规整算法进行文本相关的声纹模式匹配,并结合安卓NDK技术实现快速声纹识别。实验结果表明,该系统具有较高的解锁成功率和较快的解锁速度,相比数字或图形解锁,声纹解锁安全性更高,用户体验更好。 展开更多
关键词 梅尔频率谱系 动态时间规整 声纹识别 安卓系统 声纹解锁
在线阅读 下载PDF
基于梅尔频率倒谱系数和支持向量机的汽车鸣喇叭声识别 被引量:9
18
作者 陈东 黄智鹏 《科学技术与工程》 北大核心 2021年第11期4486-4491,共6页
使用违法鸣笛辅助执法设备监测城市交通中汽车鸣喇叭事件的发生,可以有效地治理扰民的喇叭噪声,汽车鸣喇叭声的识别方法是其关键。为了准确高效地在交通噪声里识别出汽车鸣喇叭声,采用支持向量机(support vector machine,SVM)作为喇叭... 使用违法鸣笛辅助执法设备监测城市交通中汽车鸣喇叭事件的发生,可以有效地治理扰民的喇叭噪声,汽车鸣喇叭声的识别方法是其关键。为了准确高效地在交通噪声里识别出汽车鸣喇叭声,采用支持向量机(support vector machine,SVM)作为喇叭声和交通噪声的二分类器,针对汽车喇叭声的谐波特征分布特点,提取其梅尔频率倒谱系数(Mel frequency cepstrum coefficient,MFCC)作为特征向量,并分析MFCC的梅尔滤波器个数及特征维数对识别效果的影响。实验结果表明,通过增加MFCC特征中梅尔滤波器个数及特征维数可以改善识别效果,信噪比越低越明显。 展开更多
关键词 汽车鸣喇叭声识别 梅尔频率谱系 支持向量机 特征识别
在线阅读 下载PDF
基于梅尔频率倒谱系数与短时能量的低信噪比语音端点检测 被引量:11
19
作者 柏顺 颜夕宏 +2 位作者 张生平 陈建飞 张胜 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2021年第2期117-120,共4页
低信噪比环境下语音信号的端点检测在语音识别与通信等领域具有重要意义,目前低信噪比环境下的端点检测还存在效率低、识别率不高等问题.本文在分析梅尔频率倒谱系数(MFCC)和短时能量在端点检测中应用的基础上,提出将MFCC前三维度分量相... 低信噪比环境下语音信号的端点检测在语音识别与通信等领域具有重要意义,目前低信噪比环境下的端点检测还存在效率低、识别率不高等问题.本文在分析梅尔频率倒谱系数(MFCC)和短时能量在端点检测中应用的基础上,提出将MFCC前三维度分量相加(MFCCa),再与短时能量相除(梅尔能量比)作为语音特征参数的语音端点检测测度,最后利用模糊C均值聚类算法自适应确定双门限阈值进行端点检测.选取TIMIT语音库中的50条语音信号进行实验,结果表明:在信噪比为5 dB、0 dB、-5 dB的噪声环境下,与能零比、谱熵等算法相比,本算法端点识别准确率均有所提高,其中在-5 dB信噪比环境下提升了约30%. 展开更多
关键词 语音端点检测 梅尔频率谱系 短时能量 模糊C均值聚类 低信噪比
在线阅读 下载PDF
基于短时能量和梅尔频率倒谱系数的球磨机工况识别 被引量:3
20
作者 田原 刘琼 《烧结球团》 北大核心 2020年第3期39-43,共5页
针对球磨机在粉磨作业过程中,交替出现的空磨、正常磨和饱磨3种工作状态,而球磨机磨音信号特征复杂,单一特征提取方法不能较好地识别球磨机工作状况的这一问题,提出了1种将时域的短时能量与频域的梅尔频率倒谱系数相组合作为新的磨音信... 针对球磨机在粉磨作业过程中,交替出现的空磨、正常磨和饱磨3种工作状态,而球磨机磨音信号特征复杂,单一特征提取方法不能较好地识别球磨机工作状况的这一问题,提出了1种将时域的短时能量与频域的梅尔频率倒谱系数相组合作为新的磨音信号的特征提取方法。首先,通过分析在不同工作状况下球磨机磨音信号在时频域中表现的特性,提出通过扩展特征参数来改善反映信号特征,并设计相应的时频域组合来提取特征;最后将该方法运用到分类识别隐马尔可夫模型中,并建立球磨机工况识别系统。实验表明,采用该组合的特征提取方法的识别率相对于单个的时域短时能量和频域梅尔频率倒谱系数要高,可以有效地提升球磨机工况系统的识别性能。 展开更多
关键词 球磨机磨音 特征提取 短时能量 梅尔频率谱系 隐马尔可夫模型
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部