期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLO v5的桑叶采摘与桑枝伐条识别定位方法
1
作者 申颜青 李丽 +2 位作者 李渊明 童晓玲 周永忠 《农业机械学报》 北大核心 2025年第8期487-495,共9页
为应对桑树生长的多季节变化及形态多样性,同时满足其与养蚕周期相匹配的需求,解决当前桑叶自下而上采摘与桑枝伐条作业中对人工定位的依赖问题,本研究建立桑园2021年7月、2024年9月和11月各种气候与桑枝形态的数据集,提出基于改进YOLO... 为应对桑树生长的多季节变化及形态多样性,同时满足其与养蚕周期相匹配的需求,解决当前桑叶自下而上采摘与桑枝伐条作业中对人工定位的依赖问题,本研究建立桑园2021年7月、2024年9月和11月各种气候与桑枝形态的数据集,提出基于改进YOLO v5的桑树枝干检测模型YOLO v5-cytp,构建基于深度相机的三维定位系统实现精准识别。首先,加入CA注意力机制,增强模型对桑枝底部的特征聚焦能力;然后将YOLO v5基础的CIoU损失函数替换为SIoU损失函数以提升训练速度与推理精度;最后采用轻量化GhostNet重构YOLO v5的骨干网络,在满足使用要求的前提下将模型轻量化。完成深度相机标定,实现RGB图像与深度图像对齐,经过坐标转换最终获取目标三维坐标。试验表明,YOLO v5-cytp模型平均精度均值达93.4%,相较YOLO v5原始模型提高1.2个百分点;同时内存占用量由3.79 MB降低为3.02 MB,降低20.31%;模型桑枝识别率达到91.11%;桑枝底部三维坐标(X,Y,Z)定位最大误差为(11.3,14.1,27.0)mm,符合误差允许值。模型可同时实现桑叶自下而上采摘与桑枝伐条作业的识别定位,可为桑园智能化采摘与伐条机器人提供参考。 展开更多
关键词 桑叶采摘 桑枝伐条 YOLO v5 目标检测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部