文摘提出了一种基于格拉姆角场和深度压缩模型的变压器故障识别方法。针对故障样本稀缺和VGG(visual geometry group)网络一般不能直接读取一维数据的问题,首先提出了格拉姆角场变换方法将一维故障样本转换为三维特征图像,并使用数据增强方法进行样本扩充,使其满足故障识别方法的输入需求。进一步,针对VGG网络层数深、参数多以及结构复杂的缺点,提出了一种改进深度压缩模型。使用NiNNet(network in network)网络的全局平均池化层替换VGG网络的全连接层,减少VGG末端网络的层数和参数规模;提出了一种结构化剪枝方法对VGG网络的多层卷积核进行剪枝,进一步减少VGG前端网络的参数规模,实现网络的深度压缩。由变压器油色谱故障数据上开展的数值实验和性能评估结果表明,所提方法在不损失变压器故障识别结果精度的前提下实现了VGG网络的深度压缩和结构简化:此外,深度压缩模型能够有效降低模型存储所需的存储空间和运行所需的计算资源,使其能够应用于体积小、功耗低的边缘计算平台。
文摘针对气体绝缘金属封闭式组合电器(gas insulated switchgear,GIS)设备中痕量气体紫外分析光谱信号易出现吸收峰重叠的问题,提出了一种结合格拉姆角场(Gram's angle field,GAF)和VGG16改进模型的多组分痕量气体的定量检测方法。首先利用GAF将一维紫外光谱信号转换为时序图像,将光谱信号映射为具有丰富特征信息的图像形式,从而提升原始光谱信号的特征表达能力。其次将GAF特征图输入到VGG16改进模型中,实现痕量气体浓度的特征识别。最后通过不同浓度下采集到的CS2、SO2和H2S的单组分气体和混合气体,与卷积神经网络(convolutional neural network,CNN)、VGG16和SDP_VGG16等模型进行对比实验,并结合受试者工作特征曲线下面积(area under the curve,AUC)进行验证。结果表明,该方法可以有效地检测出SF6分解所产生的CS2、SO2和H2S痕量气体,是一种行之有效的特征提取方法。