期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Modeling and monitoring of nonlinear multi-mode processes based on similarity measure-KPCA 被引量:10
1
作者 WANG Xiao-gang HUANG Li-wei ZHANG Ying-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期665-674,共10页
A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,wher... A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,where SM method serves as the separation of common subspace and specific subspace.Compared with the traditional methods,the main contributions of this work are:1) SM consisted of two measures of distance and angle to accommodate process characters.The different monitoring effect involves putting on the different weight,which would simplify the monitoring model structure and enhance its reliability and robustness.2) The proposed method can be used to find faults by the common space and judge which mode the fault belongs to by the specific subspace.Results of algorithm analysis and fault detection experiments indicate the validity and practicability of the presented method. 展开更多
关键词 process monitoring kernel principal component analysis (KPCA) similarity measure subspace separation
在线阅读 下载PDF
一种改进的K-PCA与PNN结合的快速高光谱遥感分类算法
2
作者 简萌 陈旭凤 +1 位作者 鲁军 郝敏钗 《河北大学学报(自然科学版)》 2025年第4期343-351,共9页
高光谱遥感数据可以提供更加丰富的地物信息,但因其数据维度高、冗余性强等特点导致传统分类方法效率低下.针对此问题本文提出一种改进的核-主成分分析(kernel-principalcomponentanalysis,K-PCA)与概率神经网络(probabilisticneuralnet... 高光谱遥感数据可以提供更加丰富的地物信息,但因其数据维度高、冗余性强等特点导致传统分类方法效率低下.针对此问题本文提出一种改进的核-主成分分析(kernel-principalcomponentanalysis,K-PCA)与概率神经网络(probabilisticneuralnetwork,PNN)结合的快速高光谱遥感分类算法.首先提出一种最近邻的样本选择方法,用以筛选更具代表性的地物光谱数据;其次提出一种基于半数重采样的主成分优选策略,有效去除噪声并保留光谱本质特征,大幅度降低数据维度;最后融合K-PCA的非线性降维特性与PNN的最优贝叶斯分类能力进行地物识别.在利用AVIRIS高光谱数据集的验证实验中,本算法不仅将分类精度提升至89.9%,较传统方法提升显著,且运算效率大幅提升.结果表明该算法在兼顾分类精度与实时性的高光谱地物识别场景中凸显优势,为遥感大数据智能处理提供了高效解决方案. 展开更多
关键词 高光谱遥感数据 地物识别 核-主成分分析 概率神经网络 半数重采样
在线阅读 下载PDF
Adaptive WNN aerodynamic modeling based on subset KPCA feature extraction 被引量:4
3
作者 孟月波 邹建华 +1 位作者 甘旭升 刘光辉 《Journal of Central South University》 SCIE EI CAS 2013年第4期931-941,共11页
In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel pr... In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel principal components analysis (SKPCA) feature extraction. Firstly, by fuzzy C-means clustering, some samples are selected from the training sample set to constitute a sample subset. Then, the obtained samples subset is used to execute SKPCA for extracting basic features of the training samples. Finally, using the extracted basic features, the AWNN aerodynamic model is established. The experimental results show that, in 50 times repetitive modeling, the modeling ability of the method proposed is better than that of other six methods. It only needs about half the modeling time of KPCA-AWNN under a close prediction accuracy, and can easily determine the model parameters. This enables it to be effective and feasible to construct the aerodynamic modeling for flight vehicles. 展开更多
关键词 WAVELET neural network fuzzy C-means clustering kernel principal components analysis feature extraction aerodynamic modeling
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部