在非参数统计中,局部多项式回归是重要的工具,然而以往研究的算法基本都是非递推的.本文研究递推的局部线性回归估计及其应用.首先推导出递推算法,给出了回归函数及其导函数的非参数估计.在一定的条件下,证明了算法的强一致性.并且通过...在非参数统计中,局部多项式回归是重要的工具,然而以往研究的算法基本都是非递推的.本文研究递推的局部线性回归估计及其应用.首先推导出递推算法,给出了回归函数及其导函数的非参数估计.在一定的条件下,证明了算法的强一致性.并且通过仿真例子研究了它在非线性条件异方差模型的回归函数估计和非线性ARX(nonlinearautoregressive system with exogenous inputs,NARX)系统辨识中的应用.展开更多
对于背景呈非线性变化的复杂图像,用背景预测的方法对红外点目标进行检测时,传统的线性最小二乘法(Least Squares,LS)的效果比较差。文章使用核方法(Kernel Methods,KMs)推导了最小二乘法的非线性版本:核最小二乘算法(Kernel Least Squa...对于背景呈非线性变化的复杂图像,用背景预测的方法对红外点目标进行检测时,传统的线性最小二乘法(Least Squares,LS)的效果比较差。文章使用核方法(Kernel Methods,KMs)推导了最小二乘法的非线性版本:核最小二乘算法(Kernel Least Squares,KLS);进一步推导出了更适合动态系统时序预测的指数加权形式的核最小二乘算法(Kernel Exponential Weighted Least Squares,KEWLS)。提出了一种基于核方法的红外点目标检测算法,先用KEWLS非线性回归算法预测红外图像背景,再通过自适应门限检测残差图像中的目标。非线性函数回归和红外序列图像检测实验表明核方法较大地改进了算法的非线性函数估计与红外背景预测能力。展开更多
文摘在非参数统计中,局部多项式回归是重要的工具,然而以往研究的算法基本都是非递推的.本文研究递推的局部线性回归估计及其应用.首先推导出递推算法,给出了回归函数及其导函数的非参数估计.在一定的条件下,证明了算法的强一致性.并且通过仿真例子研究了它在非线性条件异方差模型的回归函数估计和非线性ARX(nonlinearautoregressive system with exogenous inputs,NARX)系统辨识中的应用.
文摘对于背景呈非线性变化的复杂图像,用背景预测的方法对红外点目标进行检测时,传统的线性最小二乘法(Least Squares,LS)的效果比较差。文章使用核方法(Kernel Methods,KMs)推导了最小二乘法的非线性版本:核最小二乘算法(Kernel Least Squares,KLS);进一步推导出了更适合动态系统时序预测的指数加权形式的核最小二乘算法(Kernel Exponential Weighted Least Squares,KEWLS)。提出了一种基于核方法的红外点目标检测算法,先用KEWLS非线性回归算法预测红外图像背景,再通过自适应门限检测残差图像中的目标。非线性函数回归和红外序列图像检测实验表明核方法较大地改进了算法的非线性函数估计与红外背景预测能力。