期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
滑动窗近似线性依赖稀疏的核递推最小二乘算法
1
作者 陈绪君 朱宇芳 +1 位作者 胡君红 马得宇 《计算机工程》 CAS CSCD 北大核心 2016年第8期64-68,共5页
针对测试训练期间变化的信道环境,提出一种新的滑动窗近似线性依赖稀疏的核递推最小二乘算法。该算法核矩阵的尺寸只与滑动窗口宽度有关。选择字典表中最近的L个数据测试近似线性依赖准则,减少系统开销并降低系统实现的复杂度,克服ALD-K... 针对测试训练期间变化的信道环境,提出一种新的滑动窗近似线性依赖稀疏的核递推最小二乘算法。该算法核矩阵的尺寸只与滑动窗口宽度有关。选择字典表中最近的L个数据测试近似线性依赖准则,减少系统开销并降低系统实现的复杂度,克服ALD-KRLS算法核矩阵随字典表线性增长的缺陷。当训练序列的自相关矩阵特征根谱大于40时,较SW-KRLS均方误差性能有近3 d B的改善,且具有更小的稳态失调特性。仿真结果表明,与ALD-KRLS算法和KRLS算法相比,该算法具有更快的收敛速度和较好的均方误差性能。 展开更多
关键词 核递推最小二乘算法 稀疏表示 近似线性依赖 滑动窗 矩阵 高斯函数
在线阅读 下载PDF
基于核递推最小二乘的自适应均衡的弱故障提取方法研究
2
作者 李志农 赵匡 邬冠华 《振动与冲击》 EI CSCD 北大核心 2014年第4期7-10,共4页
针对传统的自适应均衡方法存在的不足,提出了一种基于核递推最小二乘(KRLS)的非线性系统自适应均衡方法。该方法通过引入核函数,将原始的非线性数据映射到高维特征空间,然后在高维特征空间中实施标准最小二乘算法。提出的方法并与传统... 针对传统的自适应均衡方法存在的不足,提出了一种基于核递推最小二乘(KRLS)的非线性系统自适应均衡方法。该方法通过引入核函数,将原始的非线性数据映射到高维特征空间,然后在高维特征空间中实施标准最小二乘算法。提出的方法并与传统的非线性系统均衡方法进行了对比分析,仿真研究表明,提出的方法优于传统的均衡方法,能很好的消除传递通道的影响,有效地提取出弱冲击性成分。最后,将提出的方法应用到转子系统的弱冲击性故障提取中,实验结果进一步验证了提出的方法的有效性。 展开更多
关键词 核递推最小二乘 自适应均衡 故障诊断 冲击故障
在线阅读 下载PDF
一种基于稀疏化核方法的红外强杂波背景抑制算法 被引量:4
3
作者 朱斌 樊祥 +3 位作者 程正东 王迪 方义强 陈晓斯 《电子学报》 EI CAS CSCD 北大核心 2015年第4期716-721,共6页
杂波背景抑制一直是红外弱小目标检测面临的难题.背景抑制可分为背景预测和差分滤波两步.针对强杂波背景呈现非线性分布的特征,提出了一种基于稀疏化核递推最小二乘(KRLS)算法的非线性背景抑制算法.算法采用监督学习模型,使用序列图像... 杂波背景抑制一直是红外弱小目标检测面临的难题.背景抑制可分为背景预测和差分滤波两步.针对强杂波背景呈现非线性分布的特征,提出了一种基于稀疏化核递推最小二乘(KRLS)算法的非线性背景抑制算法.算法采用监督学习模型,使用序列图像作为训练样本.通过稀疏化控制学习函数的复杂度并剔除冗余信息,不但可以提高学习机器的推广能力,还可以降低运算量.使用真实红外图像对算法进行了测试,并分析了算法参数.实验结果表明:算法可自适应预测不同类型的强杂波背景,并有效抑制背景杂波. 展开更多
关键词 红外背景抑制 强杂波 背景预测 稀疏 核递推最小二乘
在线阅读 下载PDF
基于核自适应滤波的无线传感网络定位算法研究 被引量:8
4
作者 李军 赵畅 《农业机械学报》 EI CAS CSCD 北大核心 2018年第4期241-248,共8页
针对动态室内环境的变化及时变的接收信号强度(Received signal strength,RSS)对定位精度的影响,提出了一类基于核自适应滤波算法的农业无线传感器网络室内定位方法。核自适应滤波算法具体包括量化核最小均方(Quantized kernel least me... 针对动态室内环境的变化及时变的接收信号强度(Received signal strength,RSS)对定位精度的影响,提出了一类基于核自适应滤波算法的农业无线传感器网络室内定位方法。核自适应滤波算法具体包括量化核最小均方(Quantized kernel least mean square,QKLMS)算法及固定预算(Fixed-budget,FB)核递推最小二乘(Kernel recursive least-squares,KRLS)算法。QKLMS算法基于一种简单在线矢量量化方法替代稀疏化,抑制核自适应滤波中径向基函数结构的增长。FB-KRLS算法是一种固定内存预算的在线学习方法,与以往的"滑窗"技术不同,每次时间更新时并不"修剪"最旧的数据,而是旨在"修剪"最无用的数据,从而抑制核矩阵的不断增长。通过构建RSS指纹信息与物理位置之间的非线性映射关系,核自适应滤波算法实现WSN的室内定位,将所提出的算法应用于仿真与物理环境下的不同实例中,在同等条件下,还与其他核学习算法、极限学习机(Extreme learning machine,ELM)等定位算法进行比较。仿真实验中2种算法在3种情形下的平均定位误差分别为0.746、0.443 m,物理实验中2种算法在2种情形下的平均定位误差分别为0.547、0.282 m。实验结果表明,所提出的核自适应滤波算法均能提高定位精度,其在线学习能力使得所提出的定位算法能自适应环境动态的变化。 展开更多
关键词 自适应滤波 量化最小均方算法 核递推最小二乘算法 无线传感网络 室内定位
在线阅读 下载PDF
基于KRLS的pH中和过程建模 被引量:1
5
作者 朱瑞鹤 李军 《传感器与微系统》 CSCD 2019年第1期48-51,共4页
针对典型的pH酸碱中和过程,提出基于核递推最小二乘(KRLS)的核学习动态模型。KRLS方法采用基于近似线性依赖技术的稀疏化算法,降低了计算复杂度及存储量,能适用于较大规模数据集的训练以及动态时变过程的建模。将所提方法应用到具有缓... 针对典型的pH酸碱中和过程,提出基于核递推最小二乘(KRLS)的核学习动态模型。KRLS方法采用基于近似线性依赖技术的稀疏化算法,降低了计算复杂度及存储量,能适用于较大规模数据集的训练以及动态时变过程的建模。将所提方法应用到具有缓冲流的双输出中和过程实例中,为验证其有效性,在同等条件下,还与核偏最小二乘(KPLS)、核主成分分析—支持向量机(KPCA-SVM)、核极限学习机(KELM)、极限学习机(ELM)、支持向量机(SVM)等方法进行比较。实验结果表明:作为一种在线自适应方法,KRLS方法具有很高的动态建模精度,为研究pH中和过程的控制奠定了基础。 展开更多
关键词 PH中和过程 核递推最小二乘 非线性系统 动态建模 稀疏化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部