针对动态室内环境的变化及时变的接收信号强度(Received signal strength,RSS)对定位精度的影响,提出了一类基于核自适应滤波算法的农业无线传感器网络室内定位方法。核自适应滤波算法具体包括量化核最小均方(Quantized kernel least me...针对动态室内环境的变化及时变的接收信号强度(Received signal strength,RSS)对定位精度的影响,提出了一类基于核自适应滤波算法的农业无线传感器网络室内定位方法。核自适应滤波算法具体包括量化核最小均方(Quantized kernel least mean square,QKLMS)算法及固定预算(Fixed-budget,FB)核递推最小二乘(Kernel recursive least-squares,KRLS)算法。QKLMS算法基于一种简单在线矢量量化方法替代稀疏化,抑制核自适应滤波中径向基函数结构的增长。FB-KRLS算法是一种固定内存预算的在线学习方法,与以往的"滑窗"技术不同,每次时间更新时并不"修剪"最旧的数据,而是旨在"修剪"最无用的数据,从而抑制核矩阵的不断增长。通过构建RSS指纹信息与物理位置之间的非线性映射关系,核自适应滤波算法实现WSN的室内定位,将所提出的算法应用于仿真与物理环境下的不同实例中,在同等条件下,还与其他核学习算法、极限学习机(Extreme learning machine,ELM)等定位算法进行比较。仿真实验中2种算法在3种情形下的平均定位误差分别为0.746、0.443 m,物理实验中2种算法在2种情形下的平均定位误差分别为0.547、0.282 m。实验结果表明,所提出的核自适应滤波算法均能提高定位精度,其在线学习能力使得所提出的定位算法能自适应环境动态的变化。展开更多
传统的线性主动噪声控制算法在噪声信号或噪声通道呈现非线性特性的情况下控制效果不佳。核-滤波最小均方误差算法(Kernel Filtered x Least Mean Square,KFxLMS)通过将输入噪声信号映射到高维再生核希尔伯特空间,再用线性方法在高维空...传统的线性主动噪声控制算法在噪声信号或噪声通道呈现非线性特性的情况下控制效果不佳。核-滤波最小均方误差算法(Kernel Filtered x Least Mean Square,KFxLMS)通过将输入噪声信号映射到高维再生核希尔伯特空间,再用线性方法在高维空间中进行处理。然而,随着新噪声信号的输入,KFxLMS算法递增的核函数运算需要较高的成本。为进一步改进KFxLMS算法,本文提出了随机傅里叶特征核滤波最小均方误差算法(Random Fourier Feature-Kernel Filtered x Least Mean Square,RFF-KFxLMS)。在仿真实验部分讨论了算法的参数选择,给出了算法的计算耗时,并验证了提出的RFF-KFxLMS算法在非线性噪声通道情况下,针对不同频率分量的正弦噪声都能够达到理想的性能。展开更多
文摘针对动态室内环境的变化及时变的接收信号强度(Received signal strength,RSS)对定位精度的影响,提出了一类基于核自适应滤波算法的农业无线传感器网络室内定位方法。核自适应滤波算法具体包括量化核最小均方(Quantized kernel least mean square,QKLMS)算法及固定预算(Fixed-budget,FB)核递推最小二乘(Kernel recursive least-squares,KRLS)算法。QKLMS算法基于一种简单在线矢量量化方法替代稀疏化,抑制核自适应滤波中径向基函数结构的增长。FB-KRLS算法是一种固定内存预算的在线学习方法,与以往的"滑窗"技术不同,每次时间更新时并不"修剪"最旧的数据,而是旨在"修剪"最无用的数据,从而抑制核矩阵的不断增长。通过构建RSS指纹信息与物理位置之间的非线性映射关系,核自适应滤波算法实现WSN的室内定位,将所提出的算法应用于仿真与物理环境下的不同实例中,在同等条件下,还与其他核学习算法、极限学习机(Extreme learning machine,ELM)等定位算法进行比较。仿真实验中2种算法在3种情形下的平均定位误差分别为0.746、0.443 m,物理实验中2种算法在2种情形下的平均定位误差分别为0.547、0.282 m。实验结果表明,所提出的核自适应滤波算法均能提高定位精度,其在线学习能力使得所提出的定位算法能自适应环境动态的变化。
文摘传统的线性主动噪声控制算法在噪声信号或噪声通道呈现非线性特性的情况下控制效果不佳。核-滤波最小均方误差算法(Kernel Filtered x Least Mean Square,KFxLMS)通过将输入噪声信号映射到高维再生核希尔伯特空间,再用线性方法在高维空间中进行处理。然而,随着新噪声信号的输入,KFxLMS算法递增的核函数运算需要较高的成本。为进一步改进KFxLMS算法,本文提出了随机傅里叶特征核滤波最小均方误差算法(Random Fourier Feature-Kernel Filtered x Least Mean Square,RFF-KFxLMS)。在仿真实验部分讨论了算法的参数选择,给出了算法的计算耗时,并验证了提出的RFF-KFxLMS算法在非线性噪声通道情况下,针对不同频率分量的正弦噪声都能够达到理想的性能。