提取有效特征对高维数据的模式分类起着关键作用.零空间线性判别分析(null-space linear discriminant analysis,NLDA)在数据降维和特征提取上表现出较好的性能,但是该方法本质上仍是一种线性方法.为有效提取数据的非线性特征,提出了零...提取有效特征对高维数据的模式分类起着关键作用.零空间线性判别分析(null-space linear discriminant analysis,NLDA)在数据降维和特征提取上表现出较好的性能,但是该方法本质上仍是一种线性方法.为有效提取数据的非线性特征,提出了零空间核判别分析算法(null-space kernel discriminant analysis,NKDA)并将其应用于人脸识别.利用核函数将原始样本隐式地映射到高维特征空间后,采用一次瘦QR分解求核类内散布矩阵的零空间鉴别矢量集,最后再进行一次Cholesky分解求得具正交性的核空间鉴别矢量集.与NLDA相比,NKDA具有更好的识别性能且在大样本情况下也能应用.另外,基于NKDA,提出了增量NKDA算法,当增加新的训练样本时能正确地更新NKDA鉴别矢量集.在ORL库、Yale库和PIE子库上的实验结果表明了算法的有效性和效率,在有效降维的同时能进一步提高鉴别能力.展开更多
针对行人再识别过程中存在获取的训练样本较少,真实样本分布不一定线性可分和算法识别率低的问题,提出基于卡方核的正则化线性判别分析行人再识别算法(KRLDA,kemel regularized linear discriminant analysis)。该算法首先利用核函数将...针对行人再识别过程中存在获取的训练样本较少,真实样本分布不一定线性可分和算法识别率低的问题,提出基于卡方核的正则化线性判别分析行人再识别算法(KRLDA,kemel regularized linear discriminant analysis)。该算法首先利用核函数将样本从线性不可分的原始空间映射到线性可分的高维特征空间,然后在高维空间中构造描述数据之间邻近关系的散度矩阵,再利用正则化线性判别分析获得高维到低维空间的投影矩阵,使得数据在低维空间能够保持高维空间的可分性,从而提升行人再识别算法的识别率。在VIPeR、iLIDS、CAVIAR和3DPeS数据集上,实验结果表明所提出的算法具有较高识别率。展开更多
文摘针对行人再识别过程中存在获取的训练样本较少,真实样本分布不一定线性可分和算法识别率低的问题,提出基于卡方核的正则化线性判别分析行人再识别算法(KRLDA,kemel regularized linear discriminant analysis)。该算法首先利用核函数将样本从线性不可分的原始空间映射到线性可分的高维特征空间,然后在高维空间中构造描述数据之间邻近关系的散度矩阵,再利用正则化线性判别分析获得高维到低维空间的投影矩阵,使得数据在低维空间能够保持高维空间的可分性,从而提升行人再识别算法的识别率。在VIPeR、iLIDS、CAVIAR和3DPeS数据集上,实验结果表明所提出的算法具有较高识别率。