期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
量子核判别分析算法
1
作者 康榕乘 余凯 +2 位作者 张新 林崧 郭躬德 《郑州大学学报(理学版)》 CAS 北大核心 2025年第1期61-66,共6页
核判别分析法通过核函数扩展了线性判别分析对非线性数据的处理能力,成为模式识别领域中一个重要的分支。然而,随着数据的指数增长,经典核判别分析算法在提取特征时会消耗大量计算资源。针对这一问题,利用量子叠加性和并行性提出了一种... 核判别分析法通过核函数扩展了线性判别分析对非线性数据的处理能力,成为模式识别领域中一个重要的分支。然而,随着数据的指数增长,经典核判别分析算法在提取特征时会消耗大量计算资源。针对这一问题,利用量子叠加性和并行性提出了一种量子核判别分析算法。首先,借助量子随机存储器技术与控制旋转操作构造需要的类间矩阵和类内矩阵所对应的密度算子;然后,融入线性方程的求解思路并行获取特征态。理论分析表明,所提算法与经典算法相比具有指数级加速。 展开更多
关键词 量子机器学习 线性判别分析 函数 特征提取 量子厄米特链积 相位估计
在线阅读 下载PDF
基于核Fisher判别分析方法的非线性统计过程监控与故障诊断 被引量:17
2
作者 赵旭 阎威武 邵惠鹤 《化工学报》 EI CAS CSCD 北大核心 2007年第4期951-956,共6页
化工过程中大量的生产数据反应了生产过程的内在变化和系统的运行状况,基于数据驱动的统计方法可以有效地对生产过程进行监控。对于复杂的化工和生化过程,其过程变量之间的相关关系往往具有很强的非线性特性,传统的线性统计过程监控方... 化工过程中大量的生产数据反应了生产过程的内在变化和系统的运行状况,基于数据驱动的统计方法可以有效地对生产过程进行监控。对于复杂的化工和生化过程,其过程变量之间的相关关系往往具有很强的非线性特性,传统的线性统计过程监控方法显得无能为力。本文提出了基于核Fisher判别分析的非线性统计过程监控方法,首先利用非线性核函数将数据从原始空间映射到高维空间,在高维空间中利用线性的Fisher判别分析方法提取数据最优的Fisher特征矢量和判别矢量来实现过程监控与故障诊断,能有效地捕获过程变量之间的非线性关系,通过对流化催化裂化(FCCU)过程的仿真表明该方法的有效性。 展开更多
关键词 FISHER判别分析 线性 统计过程监控 故障诊断
在线阅读 下载PDF
基于核化原理的非线性典型相关判别分析 被引量:11
3
作者 孙平 徐宗本 申建中 《计算机学报》 EI CSCD 北大核心 2004年第6期789-795,共7页
典型相关判别分析是将传统的典型相关分析应用于判别问题 ,它是一类重要的特征提取算法 ,但其本质上只能提取数据的线性特征 .应用统计学习理论中的核化原理可以将这样的线性特征提取算法推广至非线性特征提取算法 .该文研究了如何将这... 典型相关判别分析是将传统的典型相关分析应用于判别问题 ,它是一类重要的特征提取算法 ,但其本质上只能提取数据的线性特征 .应用统计学习理论中的核化原理可以将这样的线性特征提取算法推广至非线性特征提取算法 .该文研究了如何将这一原理应用于典型相关判别分析 ,提出了基于核化原理的非线性典型相关判别分析 ,并且给出了求解该问题的一个自适应学习算法 .数值实验表明 ,基于核化原理所导出的非线性典型相关判别分析比传统的典型相关判别分析更有效 .另外 ,该文从理论上证明 ,所提出的新方法与Fisher核判别分析等价 . 展开更多
关键词 化原理 典型相关判别分析 特征提取算法 统计学习理论 线性典型相关判别分析 自适应算法 Fisher判别分析
在线阅读 下载PDF
脑机接口的广义核线性判别分析方法研究 被引量:2
4
作者 王金甲 胡备 《中国生物医学工程学报》 CAS CSCD 北大核心 2012年第1期75-82,共8页
针对脑机接口中脑电信号处理,提出了一种基于核方法和广义奇异值分解(GSVD)的广义核线性判别分析(GKLDA)方法,对两类脑电信号进行特征提取。首先在非线性核函数映射的核空间对样本做线性判别分析,针对"小样本采样问题",采用G... 针对脑机接口中脑电信号处理,提出了一种基于核方法和广义奇异值分解(GSVD)的广义核线性判别分析(GKLDA)方法,对两类脑电信号进行特征提取。首先在非线性核函数映射的核空间对样本做线性判别分析,针对"小样本采样问题",采用GSVD求解一种非线性空域滤波器。算法验证中,采用BCI竞赛一数据集、竞赛二数据集Ⅳ和竞赛三数据集ⅢB中S4b等3组公开数据,以及一组自行采集的想象左右手运动的数据,同时分别与核共空间模式(KCSP)、核线性判别分析(KDA)、广义判别分析(GDA)进行对比。分类器采用Fisher线性判别分析分类器。所提出的方法针对3组公开数据,正确率分别为93%、77%、80%,自行数据正确率为97%,且优于其他几种核方法。实验结果表明,GKLDA方法是脑机接口中一种新的有效的特征提取方法。 展开更多
关键词 线性判别分析 函数 广义奇异值分解 脑机接口 特征提取
在线阅读 下载PDF
多重核线性判别分析及其权值优化
5
作者 刘笑嶂 冯国灿 《计算机应用》 CSCD 北大核心 2009年第9期2473-2476,共4页
为了提高非线性分类精度,借鉴在支持向量机(SVM)框架下发展起来的多重核学习方法,针对基于核的线性判别分析(KLDA)构造多重核。进而,使用拉格朗日乘子法优化最大边缘准则(MMC),提出了多重核权值优化算法。在FERET和CMUPIE人脸图像库上... 为了提高非线性分类精度,借鉴在支持向量机(SVM)框架下发展起来的多重核学习方法,针对基于核的线性判别分析(KLDA)构造多重核。进而,使用拉格朗日乘子法优化最大边缘准则(MMC),提出了多重核权值优化算法。在FERET和CMUPIE人脸图像库上的实验表明,与基于单个核的LDA相比,多重核线性判别分析能够达到更高的分类性能。 展开更多
关键词 多重 线性判别分析 最大边缘准则 权值优化 拉格朗日乘子法
在线阅读 下载PDF
多特征的核线性判别分析推荐方法
6
作者 高全力 高岭 +3 位作者 石美红 朱欣娟 陈锐 赵雪青 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第5期883-889,共7页
为提高在非线性可分数据上的推荐质量,采用基于核函数的多特征线性判别分析建立推荐模型.基于多维特征数据,采用非线性映射转换到高维特征空间,通过构建基于核的映射函数,将特征映像转换为内积空间的特征子集,最终建立基于核函数的多特... 为提高在非线性可分数据上的推荐质量,采用基于核函数的多特征线性判别分析建立推荐模型.基于多维特征数据,采用非线性映射转换到高维特征空间,通过构建基于核的映射函数,将特征映像转换为内积空间的特征子集,最终建立基于核函数的多特征线性判别分析的分类准则,对于用户喜好的物品进行分类判别并生成推荐.实验结果表明:在20%、40%、60%、80%的数据作为训练集,其余为测试集的实验条件下,随着推荐列表长度R的增加,推荐准确率呈现先升后降的趋势,在25≤R≤35区间内,能够取得最优的平均绝对误差0.34.所提方法与现有方法相比准确率平均提升18.01%,多样性平均提升42.29%,而所用时间开销仅增加6.21%.对历史偏好数据进行特征映射,有助于提高推荐准确率与多样性. 展开更多
关键词 函数 线性判别分析 多特征融合 特征偏好 推荐方法
在线阅读 下载PDF
基于MCE准则的语音识别特征线性判别分析 被引量:4
7
作者 陈斌 张连海 +2 位作者 牛铜 屈丹 李弼程 《自动化学报》 EI CSCD 北大核心 2014年第6期1208-1215,共8页
提出了一种基于最小分类错误(Minimum classification error,MCE)准则的线性判别分析方法(Linear discriminant analysis,LDA),并将其应用到连续语音识别中的特征变换.该方法采用非参数核密度估计方法进行数据概率分布估计;根据得到的... 提出了一种基于最小分类错误(Minimum classification error,MCE)准则的线性判别分析方法(Linear discriminant analysis,LDA),并将其应用到连续语音识别中的特征变换.该方法采用非参数核密度估计方法进行数据概率分布估计;根据得到的概率分布,在最小分类错误准则下,采用基于梯度下降的线性搜索算法求解判别分析变换矩阵.利用判别分析变换矩阵对相邻帧梅尔滤波器组输出拼接的超矢量变换降维,得到时频特征.实验结果表明,与传统的MFCC特征相比,经过本文判别分析提取的时频特征其识别准确率提高了1.41%,相比于HLDA(Heteroscedastic LDA)和近似成对经验正确率准则(Approximate pairwise empirical accuracy criterion,aPEAC)判别分析方法,识别准确率分别提高了1.14%和0.83%. 展开更多
关键词 线性判别分析 语音识别 密度估计 特征变换
在线阅读 下载PDF
基于零空间核判别分析的人脸识别 被引量:4
8
作者 陈达遥 陈秀宏 董昌剑 《计算机研究与发展》 EI CSCD 北大核心 2013年第9期1924-1932,共9页
提取有效特征对高维数据的模式分类起着关键作用.零空间线性判别分析(null-space linear discriminant analysis,NLDA)在数据降维和特征提取上表现出较好的性能,但是该方法本质上仍是一种线性方法.为有效提取数据的非线性特征,提出了零... 提取有效特征对高维数据的模式分类起着关键作用.零空间线性判别分析(null-space linear discriminant analysis,NLDA)在数据降维和特征提取上表现出较好的性能,但是该方法本质上仍是一种线性方法.为有效提取数据的非线性特征,提出了零空间核判别分析算法(null-space kernel discriminant analysis,NKDA)并将其应用于人脸识别.利用核函数将原始样本隐式地映射到高维特征空间后,采用一次瘦QR分解求核类内散布矩阵的零空间鉴别矢量集,最后再进行一次Cholesky分解求得具正交性的核空间鉴别矢量集.与NLDA相比,NKDA具有更好的识别性能且在大样本情况下也能应用.另外,基于NKDA,提出了增量NKDA算法,当增加新的训练样本时能正确地更新NKDA鉴别矢量集.在ORL库、Yale库和PIE子库上的实验结果表明了算法的有效性和效率,在有效降维的同时能进一步提高鉴别能力. 展开更多
关键词 人脸识别 特征提取 零空间判别分析 零空间线性判别分析 增量学习 瘦QR分解
在线阅读 下载PDF
基于核主分量相关判别分析特征提取方法的目标HRRP识别 被引量:11
9
作者 李龙 刘峥 《电子与信息学报》 EI CSCD 北大核心 2018年第1期173-180,共8页
为有效提高雷达高分辨1维距离像目标识别系统的总体性能,需要对目标高分辨1维距离像进行特征提取,以得到具有最小信息损失、高可分性且低维度的目标特征,为实现该目的提出一种基于核主分量相关判别分析的特征提取算法。该算法基于目标... 为有效提高雷达高分辨1维距离像目标识别系统的总体性能,需要对目标高分辨1维距离像进行特征提取,以得到具有最小信息损失、高可分性且低维度的目标特征,为实现该目的提出一种基于核主分量相关判别分析的特征提取算法。该算法基于目标高分辨1维距离像的统计特性,通过对核主分量分析中核函数的选择,实现对不同类型距离单元的特征提取。同时综合线性判别分析与典型相关分析理论构建新的准则函数,以实现特征空间中类内相关性与类间差异性最大化,同时减少目标特征中的冗余信息。利用实测数据进行实验,结果表明该方法提高了特征向量的可分性,降低了特征向量的维度,并且对该算法在不同强度杂波下的识别性能进行了分析,实验结果表明,该方法可以有效的提高目标高分辨1维距离像目标识别系统的总体性能。 展开更多
关键词 高分辨距离像目标识别 特征提取 主分量分析 线性判别分析 典型相关分析
在线阅读 下载PDF
类依赖的线性判别分析 被引量:5
10
作者 陈晓红 陈松灿 《小型微型计算机系统》 CSCD 北大核心 2008年第5期894-897,共4页
线性判别分析(LDA)是一种常用的特征提取方法,其目标是提取特征后样本的类间离散度和类内离散度的比值最大,即各类样本在特征空间中有最佳的可分离性.该方法利用同一个准则将所有类的样本投影到同一个特征空间中,忽略了各类样本分布特... 线性判别分析(LDA)是一种常用的特征提取方法,其目标是提取特征后样本的类间离散度和类内离散度的比值最大,即各类样本在特征空间中有最佳的可分离性.该方法利用同一个准则将所有类的样本投影到同一个特征空间中,忽略了各类样本分布特征的差异.本文提出类依赖的线性判别方法(Class-Specific LDA,CSLDA),对每一类样本寻找最优的投影矩阵,使得投影后能够更好地把该类样本与所有其他类的样本尽可能分开,并将该方法与经验核相结合,得到经验核空间中类依赖的线性判别分析.在人工数据集和UCI数据集上的实验结果表明,在输入空间和经验核空间里均有CSLDA特征提取后的识别率高于LDA. 展开更多
关键词 线性判别分析 类依赖 特征提取 经验映射 经验特征空间
在线阅读 下载PDF
基于改进的核化聚类判别分析的故障识别 被引量:2
11
作者 李天恩 何桢 《管理工程学报》 CSSCI 北大核心 2012年第3期34-41,39-41,共8页
针对一类虽然满足线性判别分析算法(LDA)的三种假设,但仍然导致LDA失效的特殊故障模式,提出运用基于高斯核函数和核化离散差判别分析的一种核化聚类判别分析方法 (KSCDA),通过模拟12种不同样本,证明KSCDA能有效解决该问题,故障识别率最... 针对一类虽然满足线性判别分析算法(LDA)的三种假设,但仍然导致LDA失效的特殊故障模式,提出运用基于高斯核函数和核化离散差判别分析的一种核化聚类判别分析方法 (KSCDA),通过模拟12种不同样本,证明KSCDA能有效解决该问题,故障识别率最大提升从62.5%到100%。且KSCDA优于KSLDA。该问题的解决对实践有一定指导意义。 展开更多
关键词 LDA失效 高斯函数 化离散差判别分析 化聚类判别分析 线性判别分析
在线阅读 下载PDF
基于谱回归核判别分析的候机楼室内快速定位算法 被引量:2
12
作者 丁建立 穆涛 王怀超 《计算机应用》 CSCD 北大核心 2019年第1期256-261,共6页
针对机场候机楼客流量大、室内环境复杂多变的特点,提出了一种基于谱回归核判别分析(SRKDA)的室内定位算法。在离线阶段,采集已知位置的接收信号强度(RSS)数据,使用SRKDA算法提取原始位置指纹(OLF)的非线性特征生成新的特征指纹库;在线... 针对机场候机楼客流量大、室内环境复杂多变的特点,提出了一种基于谱回归核判别分析(SRKDA)的室内定位算法。在离线阶段,采集已知位置的接收信号强度(RSS)数据,使用SRKDA算法提取原始位置指纹(OLF)的非线性特征生成新的特征指纹库;在线阶段,先使用SRKDA对待定位点的RSS数据进行处理,进而使用加权K最近邻(WKNN)算法进行位置估计。定位仿真实验中,在两个不同的定位场景中,所提算法在1. 5 m定位精度下的误差累积分布函数(CDF)和定位准确率分别达到91. 2%和88. 25%,相对于核主成分分析法(KPCA)+WKNN模型分别提高了16. 7个百分点和18. 64个百分点,相对于KDA+WKNN模型分别提高了3. 5个百分点和9. 07个百分点;在大量离线样本(大于1 100条)的情况下,该算法数据处理时间远小于KPCA和KDA。实验结果表明,所提算法能够提高室内定位精度,同时节省了数据处理时间,提高了定位效率。 展开更多
关键词 谱回归判别分析 室内定位算法 接收信号强度 位置指纹 线性特征提取
在线阅读 下载PDF
最优的核判别分析用于雷达目标识别 被引量:1
13
作者 于雪莲 刘本永 《电子科技大学学报》 EI CAS CSCD 北大核心 2008年第6期883-885,937,共4页
特征提取是雷达目标识别研究中的重要问题,有效、稳健的特征是提高识别率的关键。核判别分析(KDA)是一种抽取非线性特征的有效方法,但它会因为奇异性问题而难以求解。基于子空间投影的思想,给出一种最优的核判别分析(OKDA)方法,用于对... 特征提取是雷达目标识别研究中的重要问题,有效、稳健的特征是提高识别率的关键。核判别分析(KDA)是一种抽取非线性特征的有效方法,但它会因为奇异性问题而难以求解。基于子空间投影的思想,给出一种最优的核判别分析(OKDA)方法,用于对雷达目标的距离像进行特征提取,然后采用基于核的非线性分类器对所提取的特征进行分类,实现对雷达目标的识别。分别对仿真和实测距离像进行实验,结果表明该方法具有较好的识别效果。 展开更多
关键词 特征提取 线性分类器 判别分析 雷达目标识别
在线阅读 下载PDF
极速非线性判别分析网络 被引量:4
14
作者 谢群辉 陈松灿 《数据采集与处理》 CSCD 北大核心 2018年第3期446-454,共9页
由于线性判别分析仅是线性方法,难以有效应对非线性问题,而对其非线性化是解决这一问题的关键途径。非线性化判别方法主要包括神经网络和核化方法。神经网络判别分析方法虽然继承了神经网络所具有的自适应、分布存储、并行处理和非线性... 由于线性判别分析仅是线性方法,难以有效应对非线性问题,而对其非线性化是解决这一问题的关键途径。非线性化判别方法主要包括神经网络和核化方法。神经网络判别分析方法虽然继承了神经网络所具有的自适应、分布存储、并行处理和非线性映射等优点,但也遗传了其训练速度慢且易陷入局部最小值缺点;而核线性判别分析方法虽能获得全局最优解析解,但因受制于隐节点数目(等于样本个数),当数据规模大时,计算成本变大。本文受随机映射启发,对神经网络判别分析方法进行极速化改造,实现了一种极速非线性判别分析方法,兼具神经网络的自适应性和全局最优解的快速性。最后在UCI真实数据集上的实验表明,极速非线性判别分析方法具有更优的分类性能。 展开更多
关键词 线性判别分析 神经网络 判别分析 极速化
在线阅读 下载PDF
基于广义判别分析的光谱分类 被引量:9
15
作者 许馨 杨金福 +1 位作者 吴福朝 赵永恒 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2006年第10期1960-1964,共5页
提出了基于广义判别分析(generalized discriminant analysis,GDA)方法对恒星(Star)、星系(Galaxy)和类星体(Quasars)的光谱进行分类。广义判别分析将核技巧与Fisher判别分析结合起来,通过非线性映射将样本集映射到高维特征空间F,在F空... 提出了基于广义判别分析(generalized discriminant analysis,GDA)方法对恒星(Star)、星系(Galaxy)和类星体(Quasars)的光谱进行分类。广义判别分析将核技巧与Fisher判别分析结合起来,通过非线性映射将样本集映射到高维特征空间F,在F空间中进行线性判别分析。实验对比了LDA,GDA,PCA,KPCA算法对于恒星、星系和类星体的光谱分类性能。结果表明基于GDA的算法对于这3种类型光谱的分类正确率最高,LDA次之;尽管KPCA也是一种基于核的方法,但是选择主成分个数较少时效果较差,甚至低于LDA;基于PCA的分类效果最差。 展开更多
关键词 光谱分类 广义判别分析 线性判别分析 主成分分析
在线阅读 下载PDF
核参数判别选择方法在核主元分析中的应用 被引量:1
16
作者 张成 李娜 +1 位作者 李元 逄玉俊 《计算机应用》 CSCD 北大核心 2014年第10期2895-2898,共4页
针对核主元分析(KPCA)中高斯核参数β的经验选取问题,提出了核主元分析的核参数判别选择方法。依据训练样本的类标签计算类内、类间核窗宽,在以上核窗宽中经判别选择方法确定核参数。根据判别选择核参数所确定的核矩阵,能够准确描述训... 针对核主元分析(KPCA)中高斯核参数β的经验选取问题,提出了核主元分析的核参数判别选择方法。依据训练样本的类标签计算类内、类间核窗宽,在以上核窗宽中经判别选择方法确定核参数。根据判别选择核参数所确定的核矩阵,能够准确描述训练空间的结构特征。用主成分分析(PCA)对特征空间进行分解,提取主成分以实现降维和特征提取。判别核窗宽方法在分类密集区域选择较小窗宽,在分类稀疏区域选择较大窗宽。将判别核主成分分析(Dis-KPCA)应用到数据模拟实例和田纳西过程(TEP),通过与KPCA、PCA方法比较,实验结果表明,Dis-KPCA方法有效地对样本数据降维且将三个类别数据100%分开,因此,所提方法的降维精度更高。 展开更多
关键词 参数判别分析 类标签 线性降维 窗宽参数 主元分析
在线阅读 下载PDF
基于卡方核的正则化线性判别行人再识别算法 被引量:1
17
作者 雷大江 滕君 +1 位作者 王明达 吴渝 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第9期66-76,共11页
针对行人再识别过程中存在获取的训练样本较少,真实样本分布不一定线性可分和算法识别率低的问题,提出基于卡方核的正则化线性判别分析行人再识别算法(KRLDA,kemel regularized linear discriminant analysis)。该算法首先利用核函数将... 针对行人再识别过程中存在获取的训练样本较少,真实样本分布不一定线性可分和算法识别率低的问题,提出基于卡方核的正则化线性判别分析行人再识别算法(KRLDA,kemel regularized linear discriminant analysis)。该算法首先利用核函数将样本从线性不可分的原始空间映射到线性可分的高维特征空间,然后在高维空间中构造描述数据之间邻近关系的散度矩阵,再利用正则化线性判别分析获得高维到低维空间的投影矩阵,使得数据在低维空间能够保持高维空间的可分性,从而提升行人再识别算法的识别率。在VIPeR、iLIDS、CAVIAR和3DPeS数据集上,实验结果表明所提出的算法具有较高识别率。 展开更多
关键词 行人再识别 卡方 正则化线性判别分析 函数
在线阅读 下载PDF
基于KLDA-IDBO-BP的装甲车发动机故障诊断 被引量:2
18
作者 李英顺 于昂 +2 位作者 李茂 贺喆 刘师铭 《兵工学报》 北大核心 2025年第3期105-113,共9页
润滑油在发动机中发挥作用时携带着大量关于发动机的状态信息,能够对发动机产生的故障进行表征,可利用其对发动机进行故障诊断。以某型装甲车辆发动机为研究对象,提出一种基于核线性判别和改进的蜣螂优化算法优化反向传播(Back Propagat... 润滑油在发动机中发挥作用时携带着大量关于发动机的状态信息,能够对发动机产生的故障进行表征,可利用其对发动机进行故障诊断。以某型装甲车辆发动机为研究对象,提出一种基于核线性判别和改进的蜣螂优化算法优化反向传播(Back Propagation,BP)神经网络的故障诊断方法。对获取的润滑油数据通过核线性判别分析进行降维处理,降维后的数据作为BP神经网络的输入,通过引入最优拉丁超立方、权重因子以及Levy飞行策略对蜣螂优化算法进行改进,进一步对BP神经网络的关键参数进行优化,建立故障诊断模型,实现对测试数据的故障预测。实验结果验证了新方法在进行故障诊断预测方面的有效性,为装甲车辆发动机的维护和修理提供了科学依据。 展开更多
关键词 润滑油信息 发动机 故障诊断 蜣螂优化算法 反向传播神经网络 线性判别分析
在线阅读 下载PDF
8种枣核油脂肪酸组成及含量分析与比较 被引量:6
19
作者 张仁堂 张利 +1 位作者 孙欣 张克乾 《中国油脂》 CAS CSCD 北大核心 2021年第2期93-96,101,共5页
对8种枣核(贡枣、晋枣、骨头枣、北樱枣、秤砣枣、敦煌大枣、滩枣、鸡心枣)油的脂肪酸组成与含量进行分析。结果表明:8种枣核油共检出24种脂肪酸,包括13种饱和脂肪酸、11种不饱和脂肪酸;饱和脂肪酸主要为棕榈酸、硬脂酸,不饱和脂肪酸主... 对8种枣核(贡枣、晋枣、骨头枣、北樱枣、秤砣枣、敦煌大枣、滩枣、鸡心枣)油的脂肪酸组成与含量进行分析。结果表明:8种枣核油共检出24种脂肪酸,包括13种饱和脂肪酸、11种不饱和脂肪酸;饱和脂肪酸主要为棕榈酸、硬脂酸,不饱和脂肪酸主要为亚油酸、油酸、棕榈油酸;秤砣枣核油不饱和脂肪酸含量最高,达到84.55%;北樱枣核油、秤砣枣核油、滩枣核油和鸡心枣核油中油酸和亚油酸含量较高;贡枣核油、晋枣核油、骨头枣核油和敦煌大枣核油的棕榈酸含量较高;贡枣核油中亚麻酸含量最高,达到3.57%。采用聚类分析、主成分分析及线性判别分析,通过枣核油脂肪酸组成和含量可以实现8种枣核油的有效分类与区分,为不同品种大枣的分类判别与枣种质资源研究提供了新方法。 展开更多
关键词 脂肪酸 不饱和脂肪酸 聚类分析 主成分分析 线性判别分析 种质资源
在线阅读 下载PDF
一种非参数核函数鉴别分析法及其在人脸识别中的应用 被引量:1
20
作者 薛寺中 戴飞 陈秀宏 《计算机科学》 CSCD 北大核心 2012年第B06期507-509,518,共4页
核判别分析(KDA)算法仅考虑c-1个判别特征,且计算类间离散度矩阵时需使用所有的训练样本,而一些有利于分类的边界结构未能被提取。为此,提出了一种非参数非线性(核)鉴别分析方法,其在计算特征空间中的类间散布矩阵时引入一个权值函数,... 核判别分析(KDA)算法仅考虑c-1个判别特征,且计算类间离散度矩阵时需使用所有的训练样本,而一些有利于分类的边界结构未能被提取。为此,提出了一种非参数非线性(核)鉴别分析方法,其在计算特征空间中的类间散布矩阵时引入一个权值函数,从而能提取有利于分类的边界结构。仿真试验表明,新方法在识别性能上优于已有的一些方法,且避免了使用繁琐的矩阵奇异值分解理论,有一定的实用价值。 展开更多
关键词 判别分析 非参数非线性 人脸识别 特征提取
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部