稀疏表示已被证明是高光谱图像(HSI)分类中的有力工具,同时利用多种特征信息进行联合分类的优点在HSI图像分类领域受到关注,但多特征数据的稀疏策略以及数据的非线性是两个棘手的问题.为此提出了自适应稀疏模式的核联合稀疏模型对高光...稀疏表示已被证明是高光谱图像(HSI)分类中的有力工具,同时利用多种特征信息进行联合分类的优点在HSI图像分类领域受到关注,但多特征数据的稀疏策略以及数据的非线性是两个棘手的问题.为此提出了自适应稀疏模式的核联合稀疏模型对高光谱图像进行分类.对于几个互补特征(梯度,文理和形状),该模型同时获取每种特征的表示向量,并且通过施加自适应稀疏策略ladaptive,0来有效利用多特征信息.自适应稀疏策略,不仅限制不同特征空间的像素通过来自特定类的原子表示,而且允许这些像素选定的原子不同,从而提供更好的表示方法.此外,提出的核联合稀疏表示模型用于处理数据的非线性问题.核模型将数据投影到高维空间以提高可分离性,实现比线性模型更好的性能.在数据集Indian Pines和University of Pavia的实验结果表明,所提出的算法表现出更高的分类精度.展开更多
为了提高融合多序列MR图像应用于脑肿瘤提取时分割区域的准确性,基于核稀疏表示分类方法,联合多序列MR图像中的空间结构和灰度特征信息,提出一种空间特征联合的脑肿瘤核稀疏表示分类方法.首先构建各个类别的子字典,再用邻域滤波核稀疏...为了提高融合多序列MR图像应用于脑肿瘤提取时分割区域的准确性,基于核稀疏表示分类方法,联合多序列MR图像中的空间结构和灰度特征信息,提出一种空间特征联合的脑肿瘤核稀疏表示分类方法.首先构建各个类别的子字典,再用邻域滤波核稀疏表示方法对多序列脑MR图像进行分类,该邻域滤波核可以有效地将灰度特征与空间结构结合起来提高脑肿瘤提取的准确性.对国际数据库MICCAI Bra TS提供的临床和仿真数据进行分割.结果表明:与稀疏表示分类方法相比,所提出的基于空间特征联合核稀疏表示的脑肿瘤提取方法由于增加了空间结构信息,所得的提取准确率提高了5%~6%.展开更多
文摘针对多基地水下小目标分类识别问题,本文提出了一种基于核空间联合稀疏表示和指数平滑的多基地水下小目标识别方法 .对水下目标多角度散射信号提取6种典型的具有信息互补性和关联性的特征,提出一种随机森林(Random Forest,RF)和最小冗余最大相关(minimum Redundancy and Maximum Relevance,mRMR)相结合的特征选择方法(RF-mRMR),得出综合的特征重要性排序结果 .通过实验得出分类模型所需的最优特征子集,达到降低数据处理复杂度和提高目标分类结果的目的 .为了捕捉到数据中的高阶结构,在联合稀疏表示模型的基础上,使用核函数将线性不可分的特征数据映射到高维核特征空间.为了充分挖掘稀疏重构后包含在残差波段中的有用信息,使用指数平滑公式对具有一定意义的残差信息进行再利用,最后由核特征空间下的最小误差准则判定目标的类别.应用本文提出的方法对4类目标的海试数据进行识别,结果表明,相较于其他7种对比算法,本文提出的改进方法具有更好的分类性能,而且大多数情况下,本文提出的算法在双基地声呐模式下具有比单基地声呐更高的识别准确率和更低的虚警率.
文摘稀疏表示已被证明是高光谱图像(HSI)分类中的有力工具,同时利用多种特征信息进行联合分类的优点在HSI图像分类领域受到关注,但多特征数据的稀疏策略以及数据的非线性是两个棘手的问题.为此提出了自适应稀疏模式的核联合稀疏模型对高光谱图像进行分类.对于几个互补特征(梯度,文理和形状),该模型同时获取每种特征的表示向量,并且通过施加自适应稀疏策略ladaptive,0来有效利用多特征信息.自适应稀疏策略,不仅限制不同特征空间的像素通过来自特定类的原子表示,而且允许这些像素选定的原子不同,从而提供更好的表示方法.此外,提出的核联合稀疏表示模型用于处理数据的非线性问题.核模型将数据投影到高维空间以提高可分离性,实现比线性模型更好的性能.在数据集Indian Pines和University of Pavia的实验结果表明,所提出的算法表现出更高的分类精度.
文摘为了提高融合多序列MR图像应用于脑肿瘤提取时分割区域的准确性,基于核稀疏表示分类方法,联合多序列MR图像中的空间结构和灰度特征信息,提出一种空间特征联合的脑肿瘤核稀疏表示分类方法.首先构建各个类别的子字典,再用邻域滤波核稀疏表示方法对多序列脑MR图像进行分类,该邻域滤波核可以有效地将灰度特征与空间结构结合起来提高脑肿瘤提取的准确性.对国际数据库MICCAI Bra TS提供的临床和仿真数据进行分割.结果表明:与稀疏表示分类方法相比,所提出的基于空间特征联合核稀疏表示的脑肿瘤提取方法由于增加了空间结构信息,所得的提取准确率提高了5%~6%.