期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
基于自适应矩阵的核联合稀疏表示高光谱图像分类
1
作者 陈善学 夏馨 《遥感信息》 CSCD 北大核心 2024年第2期19-27,共9页
针对高光谱图像丰富的空间信息和光谱信息未充分利用的问题,提出了基于自适应矩阵的核联合稀疏表示高光谱图像分类的方法。在特征表示阶段,定义了自适应矩阵特征,通过结合自适应邻域块策略与非线性相关熵度量构成的特征来描述原始光谱像... 针对高光谱图像丰富的空间信息和光谱信息未充分利用的问题,提出了基于自适应矩阵的核联合稀疏表示高光谱图像分类的方法。在特征表示阶段,定义了自适应矩阵特征,通过结合自适应邻域块策略与非线性相关熵度量构成的特征来描述原始光谱像素,充分融合了形状可变的空间信息与非线性光谱信息。在分类阶段,考虑自适应矩阵和高光谱图像非线性,采用对数欧式核函数,构建了核联合稀疏表示模型,以获得重构误差。同时利用字典空间信息构建了矩阵相关性,引入平衡参数实现了稀疏重构误差与矩阵相关性的联合分类。在两个数据集上的实验结果表明,该算法充分利用了高光谱图像的空间信息、光谱信息,能够有效提高分类精度。 展开更多
关键词 高光谱图像分类 联合稀疏表示 自适应邻域块 自适应矩阵 矩阵相关性
在线阅读 下载PDF
基于核空间联合稀疏表示和指数平滑的多基地水下小目标识别 被引量:2
2
作者 王佳维 许枫 杨娟 《电子学报》 EI CAS CSCD 北大核心 2024年第1期217-231,共15页
针对多基地水下小目标分类识别问题,本文提出了一种基于核空间联合稀疏表示和指数平滑的多基地水下小目标识别方法 .对水下目标多角度散射信号提取6种典型的具有信息互补性和关联性的特征,提出一种随机森林(Random Forest,RF)和最小冗... 针对多基地水下小目标分类识别问题,本文提出了一种基于核空间联合稀疏表示和指数平滑的多基地水下小目标识别方法 .对水下目标多角度散射信号提取6种典型的具有信息互补性和关联性的特征,提出一种随机森林(Random Forest,RF)和最小冗余最大相关(minimum Redundancy and Maximum Relevance,mRMR)相结合的特征选择方法(RF-mRMR),得出综合的特征重要性排序结果 .通过实验得出分类模型所需的最优特征子集,达到降低数据处理复杂度和提高目标分类结果的目的 .为了捕捉到数据中的高阶结构,在联合稀疏表示模型的基础上,使用核函数将线性不可分的特征数据映射到高维核特征空间.为了充分挖掘稀疏重构后包含在残差波段中的有用信息,使用指数平滑公式对具有一定意义的残差信息进行再利用,最后由核特征空间下的最小误差准则判定目标的类别.应用本文提出的方法对4类目标的海试数据进行识别,结果表明,相较于其他7种对比算法,本文提出的改进方法具有更好的分类性能,而且大多数情况下,本文提出的算法在双基地声呐模式下具有比单基地声呐更高的识别准确率和更低的虚警率. 展开更多
关键词 多基地 水下小目标识别 多特征融合 特征选择 空间联合稀疏表示 指数平滑
在线阅读 下载PDF
联合核稀疏表示和增强字典的SAR目标识别方法 被引量:1
3
作者 李振汕 丁柏圆 《电光与控制》 CSCD 北大核心 2024年第8期44-49,共6页
为提高合成孔径雷达(SAR)图像目标识别性能,以传统稀疏表示分类(SRC)为基础,提出联合核稀疏表示分类(KSRC)和增强字典的方法。KSRC在SRC的基础上引入非线性核函数,从而提升分类器对于非线性数据关系的表征能力。增强字典在原始训练样本... 为提高合成孔径雷达(SAR)图像目标识别性能,以传统稀疏表示分类(SRC)为基础,提出联合核稀疏表示分类(KSRC)和增强字典的方法。KSRC在SRC的基础上引入非线性核函数,从而提升分类器对于非线性数据关系的表征能力。增强字典在原始训练样本的基础上,通过噪声添加和部分遮挡扩展原始字典,提升其对典型扩展操作条件的适应能力。同时,增强字典在KSRC的作用下,可以进一步提升对其他相关扩展操作条件的覆盖程度,从而提升识别方法对于多类扩展操作条件的有效性。以MSTAR数据集为基础开展实验,设置了标准操作条件以及噪声干扰、部分遮挡、型号差异等扩展操作条件,实验结果显示了本文方法的优势性能。 展开更多
关键词 合成孔径雷达 目标识别 稀疏表示分类 增强字典 扩展操作条件
在线阅读 下载PDF
复杂场景下声频传感器网络核稀疏表示车辆识别 被引量:7
4
作者 王瑞 王康晏 +3 位作者 冯玉田 张海燕 金彦亮 张有正 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2015年第4期114-120,共7页
提出一种基于核稀疏表示的声频传感器网络车辆识别方法.首先利用Mel频率倒谱系数提取车辆声音特征;然后采用核方法将其投影到高维特征空间以实现线性可分,将线性稀疏表示扩展到核域空间,构建过完备字典,求解核稀疏最优化问题对目标车辆... 提出一种基于核稀疏表示的声频传感器网络车辆识别方法.首先利用Mel频率倒谱系数提取车辆声音特征;然后采用核方法将其投影到高维特征空间以实现线性可分,将线性稀疏表示扩展到核域空间,构建过完备字典,求解核稀疏最优化问题对目标车辆进行分类.实验验证了该算法在声频数据集结构复杂的情况下,能有效地识别目标车辆,与传统的声频目标分类算法相比,提高了识别的准确率. 展开更多
关键词 稀疏表示 Mel 频率倒谱系数 车辆识别 复杂场景 传感器网络
在线阅读 下载PDF
基于局部敏感核稀疏表示的视频跟踪 被引量:5
5
作者 黄宏图 毕笃彦 +2 位作者 高山 查宇飞 侯志强 《电子与信息学报》 EI CSCD 北大核心 2016年第4期993-999,共7页
为了解决?1范数约束下的稀疏表示判别信息不足的问题,该文提出基于局部敏感核稀疏表示的视频目标跟踪算法。为了提高目标的线性可分性,首先将候选目标的SIFT特征通过高斯核函数映射到高维核空间,然后在高维核空间中求解局部敏感约束下... 为了解决?1范数约束下的稀疏表示判别信息不足的问题,该文提出基于局部敏感核稀疏表示的视频目标跟踪算法。为了提高目标的线性可分性,首先将候选目标的SIFT特征通过高斯核函数映射到高维核空间,然后在高维核空间中求解局部敏感约束下的核稀疏表示,将核稀疏表示经过多尺度最大值池化得到候选目标的表示,最后将候选目标的表示代入在线的SVMs,选择分类器得分最大的候选目标作为目标的跟踪位置。实验结果表明,由于利用了核稀疏表示下数据的局部性信息,使得算法的鲁棒性得到一定程度的提高。 展开更多
关键词 视频跟踪 稀疏表示 局部敏感约束 支持向量机
在线阅读 下载PDF
复杂场景下结合SIFT与核稀疏表示的交通目标分类识别 被引量:9
6
作者 王瑞 杜林峰 +1 位作者 孙督 万旺根 《电子学报》 EI CAS CSCD 北大核心 2014年第11期2129-2134,共6页
针对复杂场景下的交通目标分类识别难点,提出一种基于尺度不变特征转换(SIFT)与核稀疏表示的分类识别算法.该算法首先利用SIFT分别提取训练样本和待测目标局部特征信息,通过核方法将特征样本映射到核空间,构建过完备字典,最后通过待测... 针对复杂场景下的交通目标分类识别难点,提出一种基于尺度不变特征转换(SIFT)与核稀疏表示的分类识别算法.该算法首先利用SIFT分别提取训练样本和待测目标局部特征信息,通过核方法将特征样本映射到核空间,构建过完备字典,最后通过待测目标在字典中的稀疏度与重构误差对交通目标类别进行判定.同时,分析了随机投影下的核稀疏表示分类与特征维数之间的关系.实验结果表明,与SVM、稀疏表示分类(SRC)相比,该方法增强了交通目标特征层的类判别能力,具有较好的识别率和鲁棒性. 展开更多
关键词 稀疏表示 尺度不变特征转换 交通目标识别 压缩感知 随机投影
在线阅读 下载PDF
基于核非负稀疏表示的人脸识别 被引量:3
7
作者 薄纯娟 张汝波 +1 位作者 刘冠群 汪语哲 《计算机应用》 CSCD 北大核心 2014年第8期2227-2230,共4页
提出了一种新颖的核非负稀疏表示(KNSR)算法,将其用于人脸识别,主要贡献有如下3个方面:首先,在稀疏表示(SR)的基础上引入了对表示系数的非负限制,并利用核函数来描述样本之间的非线性关系,提出了相应的目标函数;其次,提出了一种乘性梯... 提出了一种新颖的核非负稀疏表示(KNSR)算法,将其用于人脸识别,主要贡献有如下3个方面:首先,在稀疏表示(SR)的基础上引入了对表示系数的非负限制,并利用核函数来描述样本之间的非线性关系,提出了相应的目标函数;其次,提出了一种乘性梯度下降迭代算法对提出的目标函数进行优化求解,该算法在理论上可以保证收敛到全局最优值;最后,利用局部二元特征和汉明核来建模人脸样本的非线性关系,从而实现鲁棒的人脸识别。实验结果表明,在具有挑战性的人脸库上所提算法识别率均高于最近邻(NN)算法、支持向量机(SVM)、最近子空间(NS)、SR和协同表示(CR)算法,在YaleB和AR数据库上都达到了大约99%的识别率。 展开更多
关键词 人脸识别 稀疏表示 函数 局部二元特征 汉明
在线阅读 下载PDF
基于稳健主成分分析与核稀疏表示的人脸识别 被引量:6
8
作者 廖瑞华 李勇帆 刘宏 《计算机工程》 CAS CSCD 北大核心 2016年第2期200-205,共6页
针对现有人脸识别方法难以有效抑制噪声和误差干扰(如光照、遮挡和表情等)的问题,提出一种基于稳健主成分分析的核稀疏表示分类算法。利用稳健主成分分析将各类训练样本转化为低秩矩阵和误差矩阵之和,并运用这2个矩阵构成稀疏表示的冗... 针对现有人脸识别方法难以有效抑制噪声和误差干扰(如光照、遮挡和表情等)的问题,提出一种基于稳健主成分分析的核稀疏表示分类算法。利用稳健主成分分析将各类训练样本转化为低秩矩阵和误差矩阵之和,并运用这2个矩阵构成稀疏表示的冗余字典。将核稀疏表示问题通过矩阵变换转化为常规的稀疏表示问题,采用正交匹配追踪算法求解该问题得到稀疏表示系数。通过稀疏表示系数计算每个类的重构误差,从而实现人脸识别。实验结果表明,与SRC,ESRC等算法相比,该算法具有较高的人脸识别率,且对噪声和误差干扰有较强的适应能力。 展开更多
关键词 稳健主成分分析 稀疏表示 人脸识别 正交匹配追踪 低秩矩阵 冗余字典
在线阅读 下载PDF
基于局部保持的核稀疏表示字典学习 被引量:3
9
作者 陈思宝 赵令 罗斌 《自动化学报》 EI CSCD 北大核心 2014年第10期2295-2305,共11页
为了利用核技巧提高分类性能,在局部保持的稀疏表示字典学习的基础上,提出了两种核化的稀疏表示字典学习方法.首先,原始训练数据被投影到高维核空间,进行基于局部保持的核稀疏表示字典学习;其次,在稀疏系数上强加核局部保持约束,进行基... 为了利用核技巧提高分类性能,在局部保持的稀疏表示字典学习的基础上,提出了两种核化的稀疏表示字典学习方法.首先,原始训练数据被投影到高维核空间,进行基于局部保持的核稀疏表示字典学习;其次,在稀疏系数上强加核局部保持约束,进行基于核局部保持的核稀疏表示字典学习,实验结果表明,该方法的分类识别结果优于其他方法。 展开更多
关键词 字典学习 稀疏表示 空间 局部保持
在线阅读 下载PDF
基于稀疏表示的核素能谱特征提取及核素识别 被引量:4
10
作者 张江梅 季海波 +1 位作者 冯兴华 王坤朋 《强激光与粒子束》 EI CAS CSCD 北大核心 2018年第4期153-157,共5页
提出了一种基于稀疏表示的核素能谱特征提取方法,其实质是将核素能谱在区分性最好的稀疏原子上进行投影。利用稀疏分解方法对核素能谱进行稀疏分解,提取分解系数向量作为表征核素的特征向量,通过模式识别分类方法建立分类模型实现核素... 提出了一种基于稀疏表示的核素能谱特征提取方法,其实质是将核素能谱在区分性最好的稀疏原子上进行投影。利用稀疏分解方法对核素能谱进行稀疏分解,提取分解系数向量作为表征核素的特征向量,通过模式识别分类方法建立分类模型实现核素识别。与传统稀疏分解方法的区别在于:在能谱稀疏分解过程中按照稀疏字典中的原子排列顺序顺次进行分解;其次,分解目的在于特征提取,即最终提取到的特征对不同核素具有可区分性,并不要求核素能谱的重构精度。在^(241)Am,^(133)Ba,^(60)Co,^(137)Cs,^(131)I和152 Eu共6种核素1200个能谱数据上进行了核素识别实验,7种不同分类算法的平均识别率达到91.71%,实验结果的统计分析表明,本文提出的特征提取方法识别准确率显著地高于两种传统核素能谱特征提取方法准确率。 展开更多
关键词 伽马能谱 素识别 稀疏表示 特征提取 模式识别
在线阅读 下载PDF
基于多重核的稀疏表示分类 被引量:5
11
作者 陈思宝 许立仙 罗斌 《电子学报》 EI CAS CSCD 北大核心 2014年第9期1807-1811,共5页
稀疏表示分类(SRC)及核方法在模式识别的很多问题中都得到了成功的运用.为了提高其分类精度,提出多重核稀疏表示及其分类(MKSRC)方法.提出一种快速求解稀疏系数的优化迭代方法并给出了其收敛到全局最优解的证明.对于多重核的权重给出了... 稀疏表示分类(SRC)及核方法在模式识别的很多问题中都得到了成功的运用.为了提高其分类精度,提出多重核稀疏表示及其分类(MKSRC)方法.提出一种快速求解稀疏系数的优化迭代方法并给出了其收敛到全局最优解的证明.对于多重核的权重给出了两种自动更新方式并进行了分析与比较.在不同的人脸图像库上的分类实验显示了所提出的多重核稀疏表示分类的优越性. 展开更多
关键词 稀疏表示分类(SRC) 方法 多重 权重 模式识别
在线阅读 下载PDF
应用一种多核稀疏表示模型实现掌纹分类 被引量:2
12
作者 尚丽 周燕 孙战里 《计量学报》 CSCD 北大核心 2021年第11期1430-1435,共6页
与稀疏表示(SR)模型相比,基于单个核函数的SR(KSR)模型可以有效减少数据维数、降低学习模型的计算复杂度并提高特征分类精度;但这种模型对核函数及其参数的选择通常不能包含恰当的、完整的分类信息。为了满足更高的特征分类精度需求,提... 与稀疏表示(SR)模型相比,基于单个核函数的SR(KSR)模型可以有效减少数据维数、降低学习模型的计算复杂度并提高特征分类精度;但这种模型对核函数及其参数的选择通常不能包含恰当的、完整的分类信息。为了满足更高的特征分类精度需求,提出了一种基于多个核函数的SR(M-KSR)模型及其快速稀疏优化方法,并将其应用于掌纹图像的分类。测试结果证明了基于M-KSR模型的掌纹分类方法的有效性和实用性。 展开更多
关键词 计量学 掌纹图像 稀疏表示 稀疏表示 特征提取 特征分类
在线阅读 下载PDF
基于自适应核联合稀疏表示的多特征高光谱图像分类 被引量:3
13
作者 张会敏 杨明 吕静 《中国科学技术大学学报》 CAS CSCD 北大核心 2018年第4期298-306,共9页
稀疏表示已被证明是高光谱图像(HSI)分类中的有力工具,同时利用多种特征信息进行联合分类的优点在HSI图像分类领域受到关注,但多特征数据的稀疏策略以及数据的非线性是两个棘手的问题.为此提出了自适应稀疏模式的核联合稀疏模型对高光... 稀疏表示已被证明是高光谱图像(HSI)分类中的有力工具,同时利用多种特征信息进行联合分类的优点在HSI图像分类领域受到关注,但多特征数据的稀疏策略以及数据的非线性是两个棘手的问题.为此提出了自适应稀疏模式的核联合稀疏模型对高光谱图像进行分类.对于几个互补特征(梯度,文理和形状),该模型同时获取每种特征的表示向量,并且通过施加自适应稀疏策略ladaptive,0来有效利用多特征信息.自适应稀疏策略,不仅限制不同特征空间的像素通过来自特定类的原子表示,而且允许这些像素选定的原子不同,从而提供更好的表示方法.此外,提出的核联合稀疏表示模型用于处理数据的非线性问题.核模型将数据投影到高维空间以提高可分离性,实现比线性模型更好的性能.在数据集Indian Pines和University of Pavia的实验结果表明,所提出的算法表现出更高的分类精度. 展开更多
关键词 高光谱图像分类 联合稀疏表示 特征提取
在线阅读 下载PDF
基于核稀疏表示的图像去噪算法 被引量:6
14
作者 韩金菊 邹国良 《计算机工程》 CAS CSCD 北大核心 2016年第3期272-277,共6页
传统去噪算法去除噪声后仍有噪声残留,且噪声较大时的图像去噪效果不明显。针对该问题,提出一种新的图像去噪算法。将输入的噪声图像分成相互重叠的图像块,随机抽取适量的图像块学习得到自适应的冗余字典,给出核正则化正交匹配追踪技术... 传统去噪算法去除噪声后仍有噪声残留,且噪声较大时的图像去噪效果不明显。针对该问题,提出一种新的图像去噪算法。将输入的噪声图像分成相互重叠的图像块,随机抽取适量的图像块学习得到自适应的冗余字典,给出核正则化正交匹配追踪技术,利用该技术得到稀疏表示系数,并使用稀疏表示系数恢复原图像。实验结果表明,与K-奇异值分解算法相比,该算法的峰值信噪比较高,且能较好地保持图像的细节和纹理信息。 展开更多
关键词 字典学习 冗余字典 稀疏表示 图像去噪 正交匹配追踪
在线阅读 下载PDF
基于稀疏字典学习和核稀疏表示的激光遥感图像超分辨重建 被引量:6
15
作者 范文兵 方堃 杨潇楠 《激光杂志》 北大核心 2015年第6期52-58,共7页
针对激光遥感图像的超分辨重建问题,提出了基于稀疏字典学习和核稀疏表示的单幅图像超分辨重建算法。该算法首先利用已有的高分辨图像,通过预处理得到高低分辨样本集;然后利用稀疏字典学习技术训练得到稀疏的高低分辨字典对;最后提出了... 针对激光遥感图像的超分辨重建问题,提出了基于稀疏字典学习和核稀疏表示的单幅图像超分辨重建算法。该算法首先利用已有的高分辨图像,通过预处理得到高低分辨样本集;然后利用稀疏字典学习技术训练得到稀疏的高低分辨字典对;最后提出了核正交匹配追踪算法求解核稀疏表示问题得到稀疏表示系数,结合高分辨字典重建高分辨图像。相比较现有同类的超分辨重建算法,由于采用了稀疏字典学习技术,该算法训练字典时需要较少的样本数和计算量,同时由于核稀疏表示能够描述图像的细节信息,使得重建效果得到了进一步的提高。实验结果验证了算法的有效性。 展开更多
关键词 稀疏字典学习 稀疏表示 超分辨重建 激光遥感
在线阅读 下载PDF
基于核函数的联合稀疏表示高光谱图像分类 被引量:10
16
作者 陈善学 周艳发 漆若兰 《系统工程与电子技术》 EI CSCD 北大核心 2018年第3期692-698,共7页
为了充分利用高光谱图像邻域像元间的相似性与独特性这一特征信息,提出了一种基于核函数的联合稀疏表示分类方法(kernel joint sparse representation classification,K-JSRC)来提高高光谱图像的分类精度。该方法通过一种改进的核函数... 为了充分利用高光谱图像邻域像元间的相似性与独特性这一特征信息,提出了一种基于核函数的联合稀疏表示分类方法(kernel joint sparse representation classification,K-JSRC)来提高高光谱图像的分类精度。该方法通过一种改进的核函数对每个待测中心像元的所有邻域像元自适应的予以不同权重来测量待测中心像元与邻域像元的相似度从而得到不规则的最优邻域窗口。在Indian Pines和University of Pavia两个高光谱数据集上的实验结果表明,提出的分类算法对高光谱图像进行了很好的分类并且其分类精度优于同类算法。 展开更多
关键词 高光谱图像分类 联合稀疏表示 函数 权重 自适应
在线阅读 下载PDF
基于核稀疏表示的人脸人耳融合识别算法的研究 被引量:2
17
作者 张明 黄炳家 郑秋梅 《现代电子技术》 北大核心 2019年第4期80-84,共5页
针对人脸人耳融合识别算法对图像光照变化、表情变化、拍摄角度变化等鲁棒性不强的问题,将核稀疏表示理论引入到人脸人耳融合识别中,提出基于核稀疏表示的人脸人耳融合识别算法。新算法采用的是能有效降低样本维度的PCA特征提取算法,人... 针对人脸人耳融合识别算法对图像光照变化、表情变化、拍摄角度变化等鲁棒性不强的问题,将核稀疏表示理论引入到人脸人耳融合识别中,提出基于核稀疏表示的人脸人耳融合识别算法。新算法采用的是能有效降低样本维度的PCA特征提取算法,人脸人耳的特征融合层级选用既能实现冗余信息有效压缩,又能最大程度利用不同模态生物特征可区分性的特征级融合。考虑到不同模态生物特征对最终识别的贡献可能有所不同,该算法采用加权串联融合法,同时测试样本在训练样本中稀疏表示系数的求解采用的是迭代速度比较快的正交匹配追踪算法。与其他识别算法相比,该算法具有非常好的识别性能,并且对人脸人耳图像变化具有很强的鲁棒性。 展开更多
关键词 融合识别 稀疏表示 特征提取 加权串联融合 正交匹配追踪算法 鲁棒性
在线阅读 下载PDF
核可鉴别的特征分块稀疏表示的视频语义分析 被引量:1
18
作者 詹永照 田华锋 毛启容 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第8期1290-1296,共7页
针对视频特征的多样性和稀疏字典的冗余特点,提出一种基于核可鉴别的特征分块稀疏表示的视频语义分析方法.首先按照实际需求提取视频段多种特征,并根据各种特征的维数大小分别建立其分块稀疏字典,对每个分块字典在K-SVD算法基础上加入... 针对视频特征的多样性和稀疏字典的冗余特点,提出一种基于核可鉴别的特征分块稀疏表示的视频语义分析方法.首先按照实际需求提取视频段多种特征,并根据各种特征的维数大小分别建立其分块稀疏字典,对每个分块字典在K-SVD算法基础上加入核可鉴别准则进行优化,使各种特征的稀疏表示特征具有更好的类别鉴别能力;在对视频段进行语义分析时,使用优化字典求解各种特征的稀疏表示特征,并对各种特征的稀疏表示特征采用加权KNN算法进行类别分类分析,最后依据各种特征对决策分析的支持度进行视频段的语义融合分析.实验结果表明,该方法有效地提高了视频语义分析的准确性和分析速度. 展开更多
关键词 视频语义分析 可鉴别性 特征分块稀疏表示 融合分析
在线阅读 下载PDF
基于核稀疏表示的多流形判别分析 被引量:1
19
作者 杨洋 王正群 +1 位作者 徐春林 鞠玲 《计算机应用研究》 CSCD 北大核心 2020年第10期3184-3187,3192,共5页
针对单样本人脸识别中非线性可分性的问题,提出了一种基于核稀疏表示的多流形判别分析(KSRMMDA)算法。首先,对数据图像进行分块,构建多流形模型;其次,运用核稀疏表示方法刻画各流形数据点之间的关系,学习流形内部图和流形间图;再次,在... 针对单样本人脸识别中非线性可分性的问题,提出了一种基于核稀疏表示的多流形判别分析(KSRMMDA)算法。首先,对数据图像进行分块,构建多流形模型;其次,运用核稀疏表示方法刻画各流形数据点之间的关系,学习流形内部图和流形间图;再次,在每个流形空间中分别寻找最佳的投影来保持流形内部图的特征,同时抑制流形外部图的特征;最后,通过计算测试样本流形到训练样本流形的距离进行分类识别。在extended Yale B和CMU PIE数据集上的实验研究表明,与其他同类算法相比,所提算法对光照、遮挡变化具有更强的鲁棒性。 展开更多
关键词 人脸识别 多流形 稀疏表示 流形内部图 流形间图
在线阅读 下载PDF
基于空间特征联合核稀疏表示的脑肿瘤提取方法
20
作者 刘定一 刘亚军 詹天明 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第4期449-454,共6页
为了提高融合多序列MR图像应用于脑肿瘤提取时分割区域的准确性,基于核稀疏表示分类方法,联合多序列MR图像中的空间结构和灰度特征信息,提出一种空间特征联合的脑肿瘤核稀疏表示分类方法.首先构建各个类别的子字典,再用邻域滤波核稀疏... 为了提高融合多序列MR图像应用于脑肿瘤提取时分割区域的准确性,基于核稀疏表示分类方法,联合多序列MR图像中的空间结构和灰度特征信息,提出一种空间特征联合的脑肿瘤核稀疏表示分类方法.首先构建各个类别的子字典,再用邻域滤波核稀疏表示方法对多序列脑MR图像进行分类,该邻域滤波核可以有效地将灰度特征与空间结构结合起来提高脑肿瘤提取的准确性.对国际数据库MICCAI Bra TS提供的临床和仿真数据进行分割.结果表明:与稀疏表示分类方法相比,所提出的基于空间特征联合核稀疏表示的脑肿瘤提取方法由于增加了空间结构信息,所得的提取准确率提高了5%~6%. 展开更多
关键词 脑肿瘤提取 多序列磁共振图像 稀疏表示 邻域 空间特征联合
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部