期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于一种自适应核学习的KECA子空间故障特征提取 被引量:3
1
作者 张伟 许爱强 平殿发 《北京理工大学学报》 EI CAS CSCD 北大核心 2017年第8期863-868,874,共7页
核属性约简方法对于去除冗余信息,调整数据非线性结构具有独特的优势.针对航空电子设备故障诊断中有效特征提取困难,核属性约简方法中核函数与核参数选择繁琐等问题,提出了一种基于自适应核函数优化学习的核熵元分析(kernel entropy com... 核属性约简方法对于去除冗余信息,调整数据非线性结构具有独特的优势.针对航空电子设备故障诊断中有效特征提取困难,核属性约简方法中核函数与核参数选择繁琐等问题,提出了一种基于自适应核函数优化学习的核熵元分析(kernel entropy component analysis,KECA)特征提取方法.首先针对一种自适应核函数基于改进的Fisher核矩阵测量准则建立了一种面向多分类任务的核函数优化框架,然后将优化结果与KECA相结合,通过在KECA特征子空间中选择对输入数据Renyi熵估计有较大贡献的核矩阵特征向量来实现故障特征提取.实验结果表明,本文方法不仅提升了分类精度,而且对噪声具有一定的抑制作用,具有良好的泛化性能. 展开更多
关键词 核熵元分析 Fisher区别分析 自适应函数 特征提取 故障识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部