区别于经典的基于Parzen窗口法的概率密度函数估计器构建策略,提出了基于近邻误差度量函数的启发式核密度估计器(Heuristic kernel density estimator,HKDE),用以提升对模相近数据概率密度函数拟合的准确性。首次从数据不确定性和模型...区别于经典的基于Parzen窗口法的概率密度函数估计器构建策略,提出了基于近邻误差度量函数的启发式核密度估计器(Heuristic kernel density estimator,HKDE),用以提升对模相近数据概率密度函数拟合的准确性。首次从数据不确定性和模型不确定性的角度分析了传统核密度估计器解决模相近数据概率密度函数估计问题时的缺陷:利用概率密度值对于直方图箱宽参数的收敛性确定观测数据的启发式概率密度值,降低数据概率密度值计算的不确定性;基于启发式概率密度值构建用于确定核密度估计器最优带宽的目标函数,降低最优带宽优化过程中的不确定性。在18个模相近数据集上对新估计器HKDE的可行性、合理性和有效性进行了系统性的验证。实验结果表明,与7种具有代表性的概率密度函数估计器相比,HKDE能够获得更加优异的概率分布近似表现,具有比其他估计器更低的估计误差,能够确定出更接近真实值的概率密度函数估计值。展开更多
针对核密度估计载荷外推全局固定带宽的局限性,提出一种基于KANN-DBSCAN(K-average nearest neighbor density-based spatial clustering of applications with noise)改进带宽取值的核密度估计(kernel density estimation, KDE)载荷外...针对核密度估计载荷外推全局固定带宽的局限性,提出一种基于KANN-DBSCAN(K-average nearest neighbor density-based spatial clustering of applications with noise)改进带宽取值的核密度估计(kernel density estimation, KDE)载荷外推方法。通过KANN-DBSCAN聚类算法对载荷数据进行分组聚类,采用拇指法求得不同簇间的最优带宽,然后进行核密度估计,再采用蒙特卡洛模拟进行外推。以某电动汽车在用户道路的实测载荷数据为应用对象,对外推方法的合理性进行检验。从统计参数检验量、拟合度检验和伪损伤检验3个指标对外推效果进行评估。结果表明:相比固定带宽的核密度估计外推方法,基于KANN-DBSCSN核密度估计的外推方法获得的外推载荷在统计参数上与实测载荷更为接近,均值、标准差和最大值的误差分别仅为1.9%、 4.3%和1.9%;幅值累计频次曲线拟合度R2均大于0.99,伪损伤均接近1。结果验证了该聚类方法在核密度估计载荷外推的有效性,有助于编制汽车在用户道路上的载荷谱,为具有相似载荷分布特点的机械零部件载荷外推提供了参考。展开更多
文摘区别于经典的基于Parzen窗口法的概率密度函数估计器构建策略,提出了基于近邻误差度量函数的启发式核密度估计器(Heuristic kernel density estimator,HKDE),用以提升对模相近数据概率密度函数拟合的准确性。首次从数据不确定性和模型不确定性的角度分析了传统核密度估计器解决模相近数据概率密度函数估计问题时的缺陷:利用概率密度值对于直方图箱宽参数的收敛性确定观测数据的启发式概率密度值,降低数据概率密度值计算的不确定性;基于启发式概率密度值构建用于确定核密度估计器最优带宽的目标函数,降低最优带宽优化过程中的不确定性。在18个模相近数据集上对新估计器HKDE的可行性、合理性和有效性进行了系统性的验证。实验结果表明,与7种具有代表性的概率密度函数估计器相比,HKDE能够获得更加优异的概率分布近似表现,具有比其他估计器更低的估计误差,能够确定出更接近真实值的概率密度函数估计值。
文摘针对核密度估计载荷外推全局固定带宽的局限性,提出一种基于KANN-DBSCAN(K-average nearest neighbor density-based spatial clustering of applications with noise)改进带宽取值的核密度估计(kernel density estimation, KDE)载荷外推方法。通过KANN-DBSCAN聚类算法对载荷数据进行分组聚类,采用拇指法求得不同簇间的最优带宽,然后进行核密度估计,再采用蒙特卡洛模拟进行外推。以某电动汽车在用户道路的实测载荷数据为应用对象,对外推方法的合理性进行检验。从统计参数检验量、拟合度检验和伪损伤检验3个指标对外推效果进行评估。结果表明:相比固定带宽的核密度估计外推方法,基于KANN-DBSCSN核密度估计的外推方法获得的外推载荷在统计参数上与实测载荷更为接近,均值、标准差和最大值的误差分别仅为1.9%、 4.3%和1.9%;幅值累计频次曲线拟合度R2均大于0.99,伪损伤均接近1。结果验证了该聚类方法在核密度估计载荷外推的有效性,有助于编制汽车在用户道路上的载荷谱,为具有相似载荷分布特点的机械零部件载荷外推提供了参考。